Unknown

Dataset Information

0

Changes in the catalytic properties of Pyrococcus furiosus thermostable amylase by mutagenesis of the substrate binding sites.


ABSTRACT: Pyrococcus furiosus thermostable amylase (TA) is a cyclodextrin (CD)-degrading enzyme with a high preference for CDs over maltooligosaccharides. In this study, we investigated the roles of four residues (His414, Gly415, Met439, and Asp440) in the function of P. furiosus TA by using site-directed mutagenesis and kinetic analysis. A variant form of P. furiosus TA containing two mutations (H414N and G415E) exhibited strongly enhanced alpha-(1,4)-transglycosylation activity, resulting in the production of a series of maltooligosaccharides that were longer than the initial substrates. In contrast, the variant enzymes with single mutations (H414N or G415E) showed a substrate preference similar to that of the wild-type enzyme. Other mutations (M439W and D440H) reversed the substrate preference of P. furiosus TA from CDs to maltooligosaccharides. Relative substrate preferences for maltoheptaose over beta-CD, calculated by comparing k(cat)/K(m) ratios, of 1, 8, and 26 for wild-type P. furiosus TA, P. furiosus TA with D440H, and P. furiosus TA with M439W and D440H, respectively, were found. Our results suggest that His414, Gly415, Met439, and Asp440 play important roles in substrate recognition and transglycosylation. Therefore, this study provides information useful in engineering glycoside hydrolase family 13 enzymes.

SUBMITTER: Yang SJ 

PROVIDER: S-EPMC2042082 | biostudies-literature | 2007 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Changes in the catalytic properties of Pyrococcus furiosus thermostable amylase by mutagenesis of the substrate binding sites.

Yang Sung-Jae SJ   Min Byoung-Chul BC   Kim Young-Wan YW   Jang Sang-Mok SM   Lee Byong-Hoon BH   Park Kwan-Hwa KH  

Applied and environmental microbiology 20070713 17


Pyrococcus furiosus thermostable amylase (TA) is a cyclodextrin (CD)-degrading enzyme with a high preference for CDs over maltooligosaccharides. In this study, we investigated the roles of four residues (His414, Gly415, Met439, and Asp440) in the function of P. furiosus TA by using site-directed mutagenesis and kinetic analysis. A variant form of P. furiosus TA containing two mutations (H414N and G415E) exhibited strongly enhanced alpha-(1,4)-transglycosylation activity, resulting in the product  ...[more]

Similar Datasets

| S-EPMC5477289 | biostudies-literature
2009-12-28 | GSE16968 | GEO
| S-EPMC4016594 | biostudies-literature
| S-EPMC4768087 | biostudies-literature
| S-EPMC2330115 | biostudies-literature
| PRJNA97361 | ENA
| PRJNA275001 | ENA
| PRJNA149041 | ENA
| PRJNA35179 | ENA
| PRJNA117257 | ENA