Unknown

Dataset Information

0

Probe selection for high-density oligonucleotide arrays.


ABSTRACT: High-density oligonucleotide microarrays enable simultaneous monitoring of expression levels of tens of thousands of transcripts. For accurate detection and quantitation of transcripts in the presence of cellular mRNA, it is essential to design microarrays whose oligonucleotide probes produce hybridization intensities that accurately reflect the concentration of original mRNA. We present a model-based approach that predicts optimal probes by using sequence and empirical information. We constructed a thermodynamic model for hybridization behavior and determined the influence of empirical factors on the effective fitting parameters. We designed Affymetrix GeneChip probe arrays that contained all 25-mer probes for hundreds of human and yeast transcripts and collected data over a 4,000-fold concentration range. Multiple linear regression models were built to predict hybridization intensities of each probe at given target concentrations, and each intensity profile is summarized by a probe response metric. We selected probe sets to represent each transcript that were optimized with respect to responsiveness, independence (degree to which probe sequences are nonoverlapping), and uniqueness (lack of similarity to sequences in the expressed genomic background). We show that this approach is capable of selecting probes with high sensitivity and specificity for high-density oligonucleotide arrays.

SUBMITTER: Mei R 

PROVIDER: S-EPMC208741 | biostudies-literature | 2003 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Probe selection for high-density oligonucleotide arrays.

Mei Rui R   Hubbell Earl E   Bekiranov Stefan S   Mittmann Mike M   Christians Fred C FC   Shen Mei-Mei MM   Lu Gang G   Fang Joy J   Liu Wei-Min WM   Ryder Tom T   Kaplan Paul P   Kulp David D   Webster Teresa A TA  

Proceedings of the National Academy of Sciences of the United States of America 20030919 20


High-density oligonucleotide microarrays enable simultaneous monitoring of expression levels of tens of thousands of transcripts. For accurate detection and quantitation of transcripts in the presence of cellular mRNA, it is essential to design microarrays whose oligonucleotide probes produce hybridization intensities that accurately reflect the concentration of original mRNA. We present a model-based approach that predicts optimal probes by using sequence and empirical information. We construct  ...[more]

Similar Datasets

| S-EPMC137427 | biostudies-literature
| S-EPMC2753849 | biostudies-literature
| S-EPMC1308859 | biostudies-literature
| S-EPMC3525261 | biostudies-literature
| S-EPMC1458964 | biostudies-literature
| S-EPMC443552 | biostudies-literature
| S-EPMC115253 | biostudies-literature
| S-EPMC1665641 | biostudies-literature
| S-EPMC311102 | biostudies-literature
| S-EPMC84166 | biostudies-literature