Project description:Modification of proteins by ubiquitin (Ub)-like proteins (UBLs) plays an important role in many cellular processes, including cell cycle progression, nuclear transport, and autophagy. Protein modification occurs via UBL-conjugating and -deconjugating enzymes, which presumably exert a regulatory function by determining the conjugation status of the substrate proteins. To target and identify UBL-modifying enzymes, we produced Nedd8, ISG15, and SUMO-1 in Escherichia coli and equipped them with a C-terminal electrophilic trap (vinyl sulfone [VS]) via an intein-based method. These C-terminally modified UBL probes reacted with purified UBL-activating (E1), -conjugating (E2), and -deconjugating enzymes in a covalent fashion. Modified UBLs were radioiodinated and incubated with cell lysates prepared from mouse cell lines and tissues to allow visualization of polypeptides reactive with individual UBL probes. The cell type- and tissue-specific labeling patterns observed for the UBL probes reflect distinct expression profiles of active enzymes, indicating tissue-specific functions of UBLs. We identify Ub C-terminal hydrolase L1 (UCH-L1) and DEN1/NEDP1/SENP8, in addition to UCH-L3, as proteases with specificity for Nedd8. The Ub-specific protease isopeptidase T/USP5 is shown to react with ISG15-VS. Furthermore, we demonstrate that the desumoylation enzyme SuPr-1 can be modified by SUMO-1-VS, a modification that is dependent on the SuPr-1 active-site cysteine. The UBL probes described here will be valuable tools for the further characterization of the enzymatic pathways that govern modification by UBLs.
Project description:Protozoa constitute the earliest branch of the eukaryotic lineage, and several groups of protozoans are serious parasites of humans and other animals. Better understanding of biochemical pathways that are either in common with or divergent from those of higher eukaryotes is integral in the defense against these parasites. In yeast and humans, the posttranslational methylation of arginine residues in proteins affects myriad cellular processes, including transcription, RNA processing, DNA replication and repair, and signal transduction. The protein arginine methyltransferases (PRMTs) that catalyze these reactions, which are unique to the eukaryotic kingdom of organisms, first become evident in protozoa. In this review, we focus on the current understanding of arginine methylation in multiple species of parasitic protozoa, including Trichomonas, Entamoeba, Toxoplasma, Plasmodium, and Trypanosoma spp., and discuss how arginine methylation may play important and unique roles in each type of parasite. We mine available genomic and transcriptomic data to inventory the families of PRMTs in different parasites and the changes in their abundance during the life cycle. We further review the limited functional studies on the roles of arginine methylation in parasites, including epigenetic regulation in Apicomplexa and RNA processing in trypanosomes. Interestingly, each of the parasites considered herein has significantly differing sets of PRMTs, and we speculate on the importance of this diversity in aspects of parasite biology, such as differentiation and antigenic variation.
Project description:Aspartate aminotransferases have been cloned and expressed from Crithidia fasciculata, Trypanosoma brucei brucei, Giardia intestinalis, and Plasmodium falciparum and have been found to play a role in the final step of methionine regeneration from methylthioadenosine. All five enzymes contain sequence motifs consistent with membership in the Ia subfamily of aminotransferases; the crithidial and giardial enzymes and one trypanosomal enzyme were identified as cytoplasmic aspartate aminotransferases, and the second trypanosomal enzyme was identified as a mitochondrial aspartate aminotransferase. The plasmodial enzyme contained unique sequence substitutions and appears to be highly divergent from the existing members of the Ia subfamily. In addition, the P. falciparum enzyme is the first aminotransferase found to lack the invariant residue G197 (P. K. Mehta, T. I. Hale, and P. Christen, Eur. J. Biochem. 214:549-561, 1993), a feature shared by sequences discovered in P. vivax and P. berghei. All five enzymes were able to catalyze aspartate-ketoglutarate, tyrosine-ketoglutarate, and amino acid-ketomethiobutyrate aminotransfer reactions. In the latter, glutamate, phenylalanine, tyrosine, tryptophan, and histidine were all found to be effective amino donors. The crithidial and trypanosomal cytosolic aminotransferases were also able to catalyze alanine-ketoglutarate and glutamine-ketoglutarate aminotransfer reactions and, in common with the giardial aminotransferase, were able to catalyze the leucine-ketomethiobutyrate aminotransfer reaction. In all cases, the kinetic constants were broadly similar, with the exception of that of the plasmodial enzyme, which catalyzed the transamination of ketomethiobutyrate significantly more slowly than aspartate-ketoglutarate aminotransfer. This result obtained with the recombinant P. falciparum aminotransferase parallels the results seen for total ketomethiobutyrate transamination in malarial homogenates; activity in the latter was much lower than that in homogenates from other organisms. Total ketomethiobutyrate transamination in Trichomonas vaginalis and G. intestinalis homogenates was extensive and involved lysine-ketomethiobutyrate enzyme activity in addition to the aspartate aminotransferase activity. The methionine production in these two species could be inhibited by the amino-oxy compounds canaline and carboxymethoxylamine. Canaline was also found to be an uncompetitive inhibitor of the plasmodial aspartate aminotransferase, with a K(i) of 27 microm.
Project description:The SIR2 family of NAD(+)-dependent protein deacetylases, collectively called sirtuins, has been of central interest due to their proposed roles in life-span regulation and ageing. Sirtuins are one group of environment sensors of a cell interpreting external information and orchestrating internal responses at the sub-cellular level, through participation in gene regulation mechanisms. Remarkably conserved across all kingdoms of life SIR2 proteins in several protozoan parasites appear to have both conserved and intriguing unique functions. This review summarises our current knowledge of the members of the sirtuin families in Apicomplexa, including Plasmodium, and other protozoan parasites such as Trypanosoma and Leishmania. The wide diversity of processes regulated by SIR2 proteins makes them targets worthy of exploitation in anti-parasitic therapies.
Project description:Deamidase of Pup (Dop), the prokaryotic ubiquitin-like protein (Pup)-deconjugating enzyme, is critical for the full virulence of Mycobacterium tuberculosis and is unique to bacteria, providing an ideal target for the development of selective chemotherapies. We used a combination of genetics and chemical biology to characterize the mechanism of depupylation. We identified an aspartate as a potential nucleophile in the active site of Dop, suggesting a novel protease activity to target for inhibitor development.
Project description:The regulatory influence of ubiquitin is vast, encompassing all cellular processes, by virtue of its central roles in protein degradation, membrane trafficking, and cell signaling. But how does ubiquitin, a 76 amino acid peptide, carry out such diverse, complex functions in eukaryotic cells? Part of the answer is rooted in the high degree of complexity associated with ubiquitin polymers, which can be 'read' and processed differently depending on topology and cellular context. However, recent evidence indicates that post-translational modifications on ubiquitin itself enhance the complexity of the ubiquitin code. Here, we review recent discoveries related to the regulation of the ubiquitin code by phosphorylation. We summarize what is currently known about phosphorylation of ubiquitin at Ser65, Ser57, and Thr12, and we discuss the potential for phosphoregulation of ubiquitin at other sites. We also discuss accumulating evidence that ubiquitin-like modifiers, such as SUMO, are likewise regulated by phosphorylation. A complete understanding of these regulatory codes and their complex lexicon will require dissection of mechanisms that govern phosphorylation of ubiquitin and ubiquitin-like proteins, particularly in the context of cellular stress and disease.
Project description:Sarcocystis parasites are among the most common parasitic protozoa in farm animals. So far, the diversity of these parasites has been mainly studied in animal carcasses by morphological or molecular methods. Research on parasitic protozoa in environmental samples is scarce due to the lack of an appropriate methodology and low concentrations of parasites. For these reasons, there is a paucity of validated methods for Sarcocystis identification from environmental samples. Therefore, the present study aims to investigate various molecular methods for Sarcocystis parasite identification in water samples. In the present study, the sample volume, sporocysts isolation, and various conventional PCR were evaluated, and species-specific primers for the identification of different Sarcocystis species have been developed. Of the methods studied, based on data the most appropriate method for the identification of analyzed Sarcocystis spp. in water bodies is nested PCR, using species-specific primers targeting the cox1 gene. Sarcocystis DNA was detected in 111 out of 114 (97.4%) samples. This paper represents the first identification of S. bovifelis, S. cruzi, S. hirsuta, S. arieticanis, S. tenella, S. capracanis, S. bertrami, and S. miescheriana by PCR and sequencing in environmental water samples. Our pilot study is useful in developing techniques for the identification of Sarcocystis species from water samples.
Project description:Human parasitic protozoa cause a large number of diseases worldwide and, for some of these diseases, there are no effective treatments to date, and drug resistance has been observed. For these reasons, the discovery of new etiological treatments is necessary. In this sense, parasitic metabolic pathways that are absent in vertebrate hosts would be interesting research candidates for the identification of new drug targets. Most likely due to the protozoa variability, uncertain phylogenetic origin, endosymbiotic events, and evolutionary pressure for adaptation to adverse environments, a surprising variety of prenylquinones can be found within these organisms. These compounds are involved in essential metabolic reactions in organisms, for example, prevention of lipoperoxidation, participation in the mitochondrial respiratory chain or as enzymatic cofactors. This review will describe several prenylquinones that have been previously characterized in human pathogenic protozoa. Among all existing prenylquinones, this review is focused on ubiquinone, menaquinone, tocopherols, chlorobiumquinone, and thermoplasmaquinone. This review will also discuss the biosynthesis of prenylquinones, starting from the isoprenic side chains to the aromatic head group precursors. The isoprenic side chain biosynthesis maybe come from mevalonate or non-mevalonate pathways as well as leucine dependent pathways for isoprenoid biosynthesis. Finally, the isoprenic chains elongation and prenylquinone aromatic precursors origins from amino acid degradation or the shikimate pathway is reviewed. The phylogenetic distribution and what is known about the biological functions of these compounds among species will be described, as will the therapeutic strategies associated with prenylquinone metabolism in protozoan parasites.
Project description:Phosphorylation dynamically regulates the function of proteins by maintaining a balance between protein kinase and phosphatase activity. A comprehensive understanding of the role phosphatases in cellular signaling is lacking in case of protozoans of medical and veterinary importance worldwide. The drugs used to treat protozoal diseases have many undesired effects and the development of resistance, highlights the need for new effective and safer antiprotozoal agents. In the present study we have analyzed phosphatomes of 15 protozoans of medical significance. We identified ~2000 phosphatases, out of which 21% are uncharacterized proteins. A significant positive correlation between phosphatome and proteome size was observed except for E. histolytica, having highest density of phosphatases irrespective of its proteome size. A difference in the number of phosphatases among different genera shows the variation in the signaling pathways they are involved in. The phosphatome of parasites is dominated by ser/thr phosphatases contrary to the vertebrate host dominated by tyrosine phosphatases. Phosphatases were widely distributed throughout the cell suggesting physiological adaptation of the parasite to regulate its host. 20% to 45% phosphatome of different protozoa consists of ectophosphatases, i.e. crucial for the survival of parasites. A database and a webserver "ProtozPhosDB" can be used to explore the phosphatomes of protozoans of medical significance.
Project description:The Trypanosoma brucei genome has four highly similar genes encoding sphingolipid synthases (TbSLS1-4). TbSLSs are polytopic membrane proteins that are essential for viability of the pathogenic bloodstream stage of this human protozoan parasite and, consequently, can be considered as potential drug targets. TbSLS4 was shown previously to be a bifunctional sphingomyelin/ethanolamine phosphorylceramide synthase, whereas functions of the others were not characterized. Using a recently described liposome-supplemented cell-free synthesis system, which eliminates complications from background cellular activities, we now unambiguously define the enzymatic specificity of the entire gene family. TbSLS1 produces inositol phosphorylceramide, TbSLS2 produces ethanolamine phosphorylceramide, and TbSLS3 is bifunctional, like TbSLS4. These findings indicate that TbSLS1 is uniquely responsible for synthesis of inositol phosphorylceramide in insect stage parasites, in agreement with published expression array data (17). This approach also revealed that the Trypanosoma cruzi ortholog (TcSLS1) is a dedicated inositol phosphorylceramide synthase. The cell-free synthesis system allowed rapid optimization of the reaction conditions for these enzymes and site-specific mutagenesis to alter end product specificity. A single residue at position 252 (TbSLS1, Ser(252); TbSLS3, Phe(252)) strongly influences enzymatic specificity. We also have used this system to demonstrate that aureobasidin A, a potent inhibitor of fungal inositol phosphorylceramide synthases, does not significantly affect any of the TbSLS activities, consistent with the phylogenetic distance of these two clades of sphingolipid synthases. These results represent the first application of cell-free synthesis for the rapid preparation and functional annotation of integral membrane proteins and thus illustrate its utility in studying otherwise intractable enzyme systems.