Unknown

Dataset Information

0

Trafficking of siderophore transporters in Saccharomyces cerevisiae and intracellular fate of ferrioxamine B conjugates.


ABSTRACT: We have studied the intracellular trafficking of Sit1 [ferrioxamine B (FOB) transporter] and Enb1 (enterobactin transporter) in Saccharomyces cerevisiae using green fluorescent protein (GFP) fusion proteins. Enb1 was constitutively targeted to the plasma membrane. Sit1 was essentially targeted to the vacuolar degradation pathway when synthesized in the absence of substrate. Massive plasma membrane sorting of Sit1 was induced by various siderophore substrates of Sit1, and by coprogen, which is not a substrate of Sit1. Thus, different siderophore transporters use different regulated trafficking processes. We also studied the fate of Sit1-mediated internalized siderophores. Ferrioxamine B was recovered in isolated vacuolar fractions, where it could be detected spectrophotometrically. Ferrioxamine B coupled to an inhibitor of mitochondrial protoporphyrinogen oxidase (acifluorfen) could not reach its target unless the cells were disrupted, confirming the tight compartmentalization of siderophores within cells. Ferrioxamine B coupled to a fluorescent moiety, FOB-nitrobenz-2-oxa-1,3-diazole, used as a Sit1-dependent iron source, accumulated in the vacuolar lumen even in mutants displaying a steady-state accumulation of Sit1 at the plasma membrane or in endosomal compartments. Thus, the fates of siderophore transporters and siderophores diverge early in the trafficking process.

SUBMITTER: Froissard M 

PROVIDER: S-EPMC2171038 | biostudies-literature | 2007 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Trafficking of siderophore transporters in Saccharomyces cerevisiae and intracellular fate of ferrioxamine B conjugates.

Froissard Marine M   Belgareh-Touzé Naïma N   Dias Marylène M   Buisson Nicole N   Camadro Jean-Michel JM   Haguenauer-Tsapis Rosine R   Lesuisse Emmanuel E  

Traffic (Copenhagen, Denmark) 20070820 11


We have studied the intracellular trafficking of Sit1 [ferrioxamine B (FOB) transporter] and Enb1 (enterobactin transporter) in Saccharomyces cerevisiae using green fluorescent protein (GFP) fusion proteins. Enb1 was constitutively targeted to the plasma membrane. Sit1 was essentially targeted to the vacuolar degradation pathway when synthesized in the absence of substrate. Massive plasma membrane sorting of Sit1 was induced by various siderophore substrates of Sit1, and by coprogen, which is no  ...[more]

Similar Datasets

| S-EPMC3374310 | biostudies-literature
| S-EPMC8470733 | biostudies-literature
| S-EPMC4046773 | biostudies-literature
| S-EPMC5546728 | biostudies-other
| S-EPMC203372 | biostudies-literature
| S-EPMC5328829 | biostudies-literature
| S-EPMC2820427 | biostudies-literature
| S-EPMC6475669 | biostudies-literature
| S-EPMC8778384 | biostudies-literature
| S-EPMC1951117 | biostudies-literature