Unknown

Dataset Information

0

Reorganization of the microtubule array in prophase/prometaphase requires cytoplasmic dynein-dependent microtubule transport.


ABSTRACT: When mammalian somatic cells enter mitosis, a fundamental reorganization of the Mt cytoskeleton occurs that is characterized by the loss of the extensive interphase Mt array and the formation of a bipolar mitotic spindle. Microtubules in cells stably expressing GFP-alpha-tubulin were directly observed from prophase to just after nuclear envelope breakdown (NEBD) in early prometaphase. Our results demonstrate a transient stimulation of individual Mt dynamic turnover and the formation and inward motion of microtubule bundles in these cells. Motion of microtubule bundles was inhibited after antibody-mediated inhibition of cytoplasmic dynein/dynactin, but was not inhibited after inhibition of the kinesin-related motor Eg5 or myosin II. In metaphase cells, assembly of small foci of Mts was detected at sites distant from the spindle; these Mts were also moved inward. We propose that cytoplasmic dynein-dependent inward motion of Mts functions to remove Mts from the cytoplasm at prophase and from the peripheral cytoplasm through metaphase. The data demonstrate that dynamic astral Mts search the cytoplasm for other Mts, as well as chromosomes, in mitotic cells.

SUBMITTER: Rusan NM 

PROVIDER: S-EPMC2173209 | biostudies-literature | 2002 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Reorganization of the microtubule array in prophase/prometaphase requires cytoplasmic dynein-dependent microtubule transport.

Rusan Nasser M NM   Tulu U Serdar US   Fagerstrom Carey C   Wadsworth Patricia P  

The Journal of cell biology 20020916 6


When mammalian somatic cells enter mitosis, a fundamental reorganization of the Mt cytoskeleton occurs that is characterized by the loss of the extensive interphase Mt array and the formation of a bipolar mitotic spindle. Microtubules in cells stably expressing GFP-alpha-tubulin were directly observed from prophase to just after nuclear envelope breakdown (NEBD) in early prometaphase. Our results demonstrate a transient stimulation of individual Mt dynamic turnover and the formation and inward m  ...[more]

Similar Datasets

| S-EPMC2772020 | biostudies-literature
| S-EPMC4368448 | biostudies-literature
| S-EPMC2836978 | biostudies-literature
| S-EPMC1634414 | biostudies-literature
| S-EPMC5034348 | biostudies-other
| S-EPMC6457270 | biostudies-literature