An atomic model of actin filaments cross-linked by fimbrin and its implications for bundle assembly and function.
Ontology highlight
ABSTRACT: Actin bundles have profound effects on cellular shape, division, adhesion, motility, and signaling. Fimbrin belongs to a large family of actin-bundling proteins and is involved in the formation of tightly ordered cross-linked bundles in the brush border microvilli and in the stereocilia of inner ear hair cells. Polymorphism in these three-dimensional (3D) bundles has prevented the detailed structural characterization required for in-depth understanding of their morphogenesis and function. Here, we describe the structural characterization of two-dimensional arrays of actin cross-linked with human T-fimbrin. Structural information obtained by electron microscopy, x-ray crystallography, and homology modeling allowed us to build the first molecular model for the complete actin-fimbrin cross-link. The restriction of the arrays to two dimensions allowed us to deduce the spatial relationship between the components, the mode of fimbrin cross-linking, and the flexibility within the cross-link. The atomic model of the fimbrin cross-link, the cross-linking rules deduced from the arrays, and the hexagonal packing of actin bundles in situ were all combined to generate an atomic model for 3D actin-fimbrin bundles. Furthermore, the assembly of the actin-fimbrin arrays suggests coupling between actin polymerization, fimbrin binding, and crossbridge formation, presumably achieved by a feedback between conformational changes and changes in affinity.
SUBMITTER: Volkmann N
PROVIDER: S-EPMC2174342 | biostudies-literature | 2001 May
REPOSITORIES: biostudies-literature
ACCESS DATA