Project description:The majority of human genes undergo alternative splicing to generate multiple isoforms with distinct functions. This process is generally controlled by cis-acting splicing regulatory elements (SREs) that recruit trans-acting factors to promote or inhibit the use of nearby splice sites. The growing interest in understanding the regulatory rules of splicing necessitates the systematic identification of these SREs and their cognate protein factors using experimental and computational approaches. Here we describe a strategy to identify and analyze both cis-acting SREs and trans-acting splicing factors. This strategy involves a cell-based screen to identify SREs from a random sequences library and a modified RNA affinity purification approach to unbiasedly identify the splicing factors. These methods can be adopted to identify splicing enhancers or silencers in both exons and introns, and can be extended to different cultured cells. The resulting SREs and splicing factors can be further analyzed with a series of computational and experimental approaches. This approach will help us to collect a molecular part-list for splicing regulation, providing a rich data source that enables a better understanding of the "splicing code".
Project description:Muscular dystrophies are a group of genetically distinct diseases for which no treatment exists. While gene transfer approach is being tested for several of these diseases, such strategies can be hampered when the size of the corresponding complementary DNA (cDNA) exceeds the packaging capacity of adeno-associated virus vectors. This issue concerns, in particular, dysferlinopathies and titinopathies that are due to mutations in the dysferlin (DYSF) and titin (TTN) genes. We investigated the efficacy of RNA trans-splicing as a mode of RNA therapy for these two types of diseases. Results obtained with RNA trans-splicing molecules designed to target the 3' end of mouse titin and human dysferlin pre-mRNA transcripts indicated that trans-splicing of pre-mRNA generated from minigene constructs or from the endogenous genes was achieved. Collectively, these results provide the first demonstration of DYSF and TTN trans-splicing reprogramming in vitro and in vivo. However, in addition to these positive results, we uncovered a possible issue of the technique in the form of undesirable translation of RNA pre-trans-splicing molecules, directly from open reading frames present on the molecule or associated with internal alternative cis-splicing. These events may hamper the efficiency of the trans-splicing process and/or lead to toxicity.
Project description:Aberrant changes in the expression of the pro-apoptotic protein, BCL-2-like 11 (BIM), can result in either impaired or excessive apoptosis, which can contribute to tumorigenesis and degenerative disorders, respectively. Altering BIM pre-mRNA splicing is an attractive approach to modulate apoptosis because BIM activity is partly determined by the alternative splicing of exons 3 or 4, whereby exon 3-containing transcripts are not apoptotic. Here we identified several cis-acting elements and splicing factors involved in BIM alternative splicing, as a step to better understand the regulation of BIM expression. We analyzed a recently discovered 2,903-bp deletion polymorphism within BIM intron 2 that biased splicing towards exon 3, and which also impaired BIM-dependent apoptosis. We found that this region harbors multiple redundant cis-acting elements that repress exon 3 inclusion. Furthermore, we have isolated a 23-nt intronic splicing silencer at the 3' end of the deletion that is important for excluding exon 3. We also show that PTBP1 and hnRNP C repress exon 3 inclusion, and that downregulation of PTBP1 inhibited BIM-mediated apoptosis. Collectively, these findings start building our understanding of the cis-acting elements and splicing factors that regulate BIM alternative splicing, and also suggest potential approaches to alter BIM splicing for therapeutic purposes.
Project description:BackgroundH-Ras pre-mRNA undergoes an alternative splicing process to render two proteins, namely p21 H-Ras and p19 H-Ras, due to either the exclusion or inclusion of the alternative intron D exon (IDX), respectively. p68 RNA helicase (p68) is known to reduce IDX inclusion.Principal findingsHere we show that p68 unwinds the stem-loop IDX-rasISS1 structure and prevents binding of hnRNP H to IDX-rasISS1. We also found that p68 alters the dynamic localization of SC35, a splicing factor that promotes IDX inclusion. The knockdown of hnRNP A1, FUS/TLS and hnRNP H resulted in upregulation of the expression of the gene encoding the SC35-binding protein, SFRS2IP. Finally, FUS/TLS was observed to upregulate p19 expression and to stimulate IDX inclusion, and in vivo RNAi-mediated depletion of hnRNP H decreased p19 H-Ras abundance.SignificanceTaken together, p68 is shown to be an essential player in the regulation of H-Ras expression as well as in a vital transduction signal pathway tied to cell proliferation and many cancer processes.
Project description:Gene expression is regulated both by cis elements, which are DNA segments closely linked to the genes they regulate, and by trans factors, which are usually proteins capable of diffusing to unlinked genes. Understanding the patterns and sources of regulatory variation is crucial for understanding phenotypic and genome evolution. Here, we measure genome-wide allele-specific expression by deep sequencing to investigate the patterns of cis and trans expression variation between two strains of Saccharomyces cerevisiae. We propose a statistical modeling framework based on the binomial distribution that simultaneously addresses normalization of read counts derived from different parents and estimating the cis and trans expression variation parameters. We find that expression polymorphism in yeast is common for both cis and trans, though trans variation is more common. Constraint in expression evolution is correlated with other hallmarks of constraint, including gene essentiality, number of protein interaction partners, and constraint in amino acid substitution, indicating that both cis and trans polymorphism are clearly under purifying selection, though trans variation appears to be more sensitive to selective constraint. Comparing interspecific expression divergence between S. cerevisiae and S. paradoxus to our intraspecific variation suggests a significant departure from a neutral model of molecular evolution. A further examination of correlation between polymorphism and divergence within each category suggests that cis divergence is more frequently mediated by positive Darwinian selection than is trans divergence.
Project description:Expression levels of human genes vary extensively among individuals. This variation facilitates analyses of expression levels as quantitative phenotypes in genetic studies where the entire genome can be scanned for regulators without prior knowledge of the regulatory mechanisms, thus enabling the identification of unknown regulatory relationships. Here, we carried out such genetic analyses with a large sample size and identified cis- and trans-acting polymorphic regulators for about 1,000 human genes. We validated the cis-acting regulators by demonstrating differential allelic expression with sequencing of transcriptomes (RNA-Seq) and the trans-regulators by gene knockdown, metabolic assays, and chromosome conformation capture analysis. The majority of the regulators act in trans to the target (regulated) genes. Most of these trans-regulators were not known to play a role in gene expression regulation. The identification of these regulators enabled the characterization of polymorphic regulation of human gene expression at a resolution that was unattainable in the past.
Project description:The formation of chimeric mRNAs is a strategy used by human cells to increase the complexity of their proteome, as revealed by the ENCODE project. Here, we use Saccharomyces cerevisiae to show a way by which trans-spliced mRNAs can be generated. We demonstrate that a pretRNA inserted into a premRNA context directs the splicing reaction precisely to the sites of the tRNA intron. A suppressor pretRNA gene was inserted, in cis, into the sequence encoding the third cytoplasmic loop of the Ste2 or Ste3 G protein-coupled receptor. The hybrid RNAs are spliced at the specific pretRNA splicing sites, releasing both functional tRNAs that suppress nonsense mutations and translatable mRNAs that activate the signal transduction pathway. The RNA molecules extracted from yeast cells were amplified by RT-PCR, and their sequences were determined, confirming the identity of the splice junctions. We then constructed two fusions between the premRNA sequence (STE2 or STE3) and the 5'- or 3'-pretRNA half, so that the two hybrid RNAs can associate with each other, in trans, through their tRNA halves. Splicing occurs at the predicted pretRNA sites, producing a chimeric STE3-STE2 receptor mRNA. RNA trans-splicing mediated by tRNA sequences, therefore, is a mechanism capable of producing new kinds of RNAs, which could code for novel proteins.
Project description:Osteoarthritis (OA) is a complex disease of the skeleton and is associated with aging. Both environmental and genetic factors contribute to its pathogenesis. We set out to identify novel genes associated with OA, concentrating on regulatory polymorphisms allowing for differential expression. Our strategy to identify differentially expressed genes included an initial transcriptome analysis of the peripheral blood mononuclear cells of six patients with OA and six age-matched healthy controls. These were screened for allelic expression imbalances and potentially regulatory single-nucleotide polymorphisms (SNPs) in the 5' regions of the genes. To establish disease association, disparate promoter SNP distributions correlating with the differential expression were tested on larger cohorts. Our approach yielded 26 candidate genes differentially expressed between patients and controls. Whereas BLP2 and CIAS1 seem to be trans-regulated, as the absence of allelic expression imbalances suggests, the presence of allelic imbalances confirms cis-regulatory mechanisms for RHOB and TXNDC3. Interestingly, on/off-switching suggests additional trans-regulation for TXNDC3. Moreover, we demonstrate for RHOB and TXNDC3 statistically significant associations between 5' SNPs and the disease that hint at regulatory functions. Investigating the respective genes functionally will not only shed light on the disease association but will also add to the understanding of the pathogenic processes involved in OA and may point out novel therapeutic approaches.
Project description:Pyruvate oxidase encoded by spxB is a major virulence factor in the human respiratory pathogen Streptococcus pneumoniae. During aerobic growth, SpxB synthesizes large amounts of H2O2 and acetyl phosphate, which can serve as a phosphoryl group donor to response regulators and be converted to ATP. SpxB is the main source of the millimolar concentrations of H2O2 produced and tolerated by pneumococcus, despite its lack of a catalase. We report here the first cis- and trans-acting regulatory elements for spxB transcription. These elements were identified in a genetic screen, similar to those used previously for phase variants, for spontaneous mutations that caused colonies of virulent serotype 2 strain D39 to change from a transparent to an opaque appearance. Six of the seven opaque colonies recovered (frequency of 3 x 10-5) were impaired for SpxB function. Modeling suggested that two mutations changed amino acids in SpxB required for FAD cofactor or subunit binding. One mutation deleted a cis-acting adjacent direct repeat required for optimal spxB transcription. The other three independent mutations created the same frameshift near the start of a trans-acting regulatory gene designated as spxR. The SpxR protein contains helix-turn-helix, CBS, and HotDog domains implicated in DNA, adenosine, and CoA compound binding, respectively, consistent with the idea that SpxR positively regulates spxB transcript amount in response to energy and metabolic state rather than oxidative state. Finally, microarray analyses of a null spxB or a spxR mutant revealed the presence of a new oxidative stress response in pneumococcus and unexpectedly demonstrated that SpxR strongly positively regulates the transcript amount of the strH exoglycosidase gene, which like spxB, has been implicated in host colonization. Keywords: genetic modification Bacterial strains were grown exponentially in rich (BHI) media at 37C and an atmosphere of 5% CO2, and were processed as described in the related Sample records. Samples were collected from three independent biological replicates and included one dye swap. Data were normalized using the Lowess (subgrid) method without background subtraction.