Unknown

Dataset Information

0

Noise in solid-state nanopores.


ABSTRACT: We study ionic current fluctuations in solid-state nanopores over a wide frequency range and present a complete description of the noise characteristics. At low frequencies (f approximately < 100 Hz) we observe 1/f-type of noise. We analyze this low-frequency noise at different salt concentrations and find that the noise power remarkably scales linearly with the inverse number of charge carriers, in agreement with Hooge's relation. We find a Hooge parameter alpha = (1.1 +/- 0.1) x 10(-4). In the high-frequency regime (f approximately > 1 kHz), we can model the increase in current power spectral density with frequency through a calculation of the Johnson noise. Finally, we use these results to compute the signal-to-noise ratio for DNA translocation for different salt concentrations and nanopore diameters, yielding the parameters for optimal detection efficiency.

SUBMITTER: Smeets RM 

PROVIDER: S-EPMC2206550 | biostudies-literature | 2008 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Noise in solid-state nanopores.

Smeets R M M RM   Keyser U F UF   Dekker N H NH   Dekker C C  

Proceedings of the National Academy of Sciences of the United States of America 20080109 2


We study ionic current fluctuations in solid-state nanopores over a wide frequency range and present a complete description of the noise characteristics. At low frequencies (f approximately < 100 Hz) we observe 1/f-type of noise. We analyze this low-frequency noise at different salt concentrations and find that the noise power remarkably scales linearly with the inverse number of charge carriers, in agreement with Hooge's relation. We find a Hooge parameter alpha = (1.1 +/- 0.1) x 10(-4). In the  ...[more]

Similar Datasets

| S-EPMC7045697 | biostudies-literature
| S-EPMC4079296 | biostudies-literature
| S-EPMC4643041 | biostudies-literature
| S-EPMC4264857 | biostudies-literature
| S-EPMC3944622 | biostudies-literature
| S-EPMC5611827 | biostudies-literature
| S-EPMC2717167 | biostudies-literature
| S-EPMC4811674 | biostudies-literature
| S-EPMC9016714 | biostudies-literature
| S-EPMC4188535 | biostudies-literature