Unknown

Dataset Information

0

Validation of the single-stranded channel conformation of gramicidin A by solid-state NMR.


ABSTRACT: The monovalent cation selective channel formed by a dimer of the polypeptide gramicidin A has a single-stranded, right-handed helical motif with 6.5 residues per turn forming a 4-A diameter pore. The structure has been refined to high resolution against 120 orientational constraints obtained from samples in a liquid-crystalline phase lipid bilayer. These structural constraints from solid-state NMR reflect the orientation of spin interaction tensors with respect to a unique molecular axis. Because these tensors are fixed in the molecular frame and because the samples are uniformly aligned with respect to the magnetic field of the NMR spectrometer, each constraint restricts the orientation of internuclear vectors with respect to the laboratory frame of reference. The structural motif of this channel has been validated, and the high-resolution structure has led to precise models for cation binding, cation selectivity, and cation conductance efficiency. The structure is consistent with the electrophysiological data and numerous biophysical studies. Contrary to a recent claim [Burkhart, B. M., Li, N., Langs, D. A., Pangborn, W. A. & Duax, W. L. (1998) Proc. Natl. Acad. Sci. USA 95, 12950-12955], the solid-state NMR constraints for gramicidin A in a lipid bilayer are not consistent with an x-ray crystallographic structure for gramicidin having a double-stranded, right-handed helix with 7.2 residues per turn.

SUBMITTER: Kovacs F 

PROVIDER: S-EPMC22161 | biostudies-literature | 1999 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Validation of the single-stranded channel conformation of gramicidin A by solid-state NMR.

Kovacs F F   Quine J J   Cross T A TA  

Proceedings of the National Academy of Sciences of the United States of America 19990701 14


The monovalent cation selective channel formed by a dimer of the polypeptide gramicidin A has a single-stranded, right-handed helical motif with 6.5 residues per turn forming a 4-A diameter pore. The structure has been refined to high resolution against 120 orientational constraints obtained from samples in a liquid-crystalline phase lipid bilayer. These structural constraints from solid-state NMR reflect the orientation of spin interaction tensors with respect to a unique molecular axis. Becaus  ...[more]

Similar Datasets

| S-EPMC4688097 | biostudies-literature
| S-EPMC5257200 | biostudies-literature
| S-EPMC1302409 | biostudies-other
| S-EPMC2562526 | biostudies-literature
| S-EPMC3627873 | biostudies-literature
| S-EPMC3724363 | biostudies-literature
| S-EPMC8341432 | biostudies-literature
| S-EPMC4008839 | biostudies-literature
| S-EPMC10446490 | biostudies-literature
| S-EPMC2920716 | biostudies-literature