Unknown

Dataset Information

0

Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating.


ABSTRACT: The molecular architecture of the NH(2) and COOH termini of the prokaryotic potassium channel KcsA has been determined using site-directed spin-labeling methods and paramagnetic resonance EPR spectroscopy. Cysteine mutants were generated (residues 5-24 and 121-160) and spin labeled, and the X-band CW EPR spectra were obtained from liposome-reconstituted channels at room temperature. Data on probe mobility (DeltaHo(-1)), accessibility parameters (PiO(2) and PiNiEdda), and inter-subunit spin-spin interaction (Omega) were used as structural constraints to build a three-dimensional folding model of these cytoplasmic domains from a set of simulated annealing and restrained molecular dynamics runs. 32 backbone structures were generated and averaged using fourfold symmetry, and a final mean structure was obtained from the eight lowest energy runs. Based on the present data, together with information from the KcsA crystal structure, a model for the three-dimensional fold of full-length KcsA was constructed. In this model, the NH(2) terminus of KcsA forms an alpha-helix anchored at the membrane-water interface, while the COOH terminus forms a right-handed four-helix bundle that extend some 40-50 A towards the cytoplasm. Functional analysis of COOH-terminal deletion constructs suggest that, while the COOH terminus does not play a substantial role in determining ion permeation properties, it exerts a modulatory role in the pH-dependent gating mechanism.

SUBMITTER: Cortes DM 

PROVIDER: S-EPMC2217246 | biostudies-literature | 2001 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating.

Cortes D M DM   Cuello L G LG   Perozo E E  

The Journal of general physiology 20010201 2


The molecular architecture of the NH(2) and COOH termini of the prokaryotic potassium channel KcsA has been determined using site-directed spin-labeling methods and paramagnetic resonance EPR spectroscopy. Cysteine mutants were generated (residues 5-24 and 121-160) and spin labeled, and the X-band CW EPR spectra were obtained from liposome-reconstituted channels at room temperature. Data on probe mobility (DeltaHo(-1)), accessibility parameters (PiO(2) and PiNiEdda), and inter-subunit spin-spin  ...[more]

Similar Datasets

| S-EPMC3141920 | biostudies-literature
| S-EPMC2823519 | biostudies-literature
| S-EPMC3207171 | biostudies-literature
| S-EPMC4504495 | biostudies-literature
| S-EPMC8294335 | biostudies-literature
| S-EPMC2672561 | biostudies-literature
| S-EPMC3813382 | biostudies-literature
| S-EPMC3030241 | biostudies-literature
| S-EPMC1367324 | biostudies-literature
| S-EPMC3645563 | biostudies-literature