Project description:Alternative splicing shapes the transcriptome and contributes to each cell's unique identity, but single-cell RNA sequencing (scRNA-seq) has struggled to capture the impact of alternative splicing. We previously showed that low recovery of mRNAs from single cells led to erroneous conclusions about the cell-to-cell variability of alternative splicing. Here, we present a method, Psix, to confidently identify splicing that changes across a landscape of single cells, using a probabilistic model that is robust against the data limitations of scRNA-seq. Its autocorrelation-inspired approach finds patterns of alternative splicing that correspond to patterns of cell identity, such as cell type or developmental stage, without the need for explicit cell clustering, labeling, or trajectory inference. Applying Psix to data that follow the trajectory of mouse brain development, we identify exons whose alternative splicing patterns cluster into modules of coregulation. We show that the exons in these modules are enriched for binding by distinct neuronal splicing factors and that their changes in splicing correspond to changes in expression of these splicing factors. Thus, Psix reveals cell type-dependent splicing patterns and the wiring of the splicing regulatory networks that control them. Our new method will enable scRNA-seq analysis to go beyond transcription to understand the roles of post-transcriptional regulation in determining cell identity.
Project description:BackgroundIn complex Metazoans a given gene frequently codes for multiple protein isoforms, through processes such as alternative splicing. Large scale functional annotation of these isoforms is a key challenge for functional genomics. This annotation gap is increasing with the large numbers of multi transcript genes being identified by technologies such as RNASeq. Furthermore attempts to characterise the functions of splicing in an organism are complicated by the difficulty in distinguishing functional isoforms from those produced by splicing errors or transcription noise. Tools to help prioritise candidate isoforms for testing are largely absent.ResultsIn this study we implement a Time-course Switch (TS) score for ranking isoforms by their likelihood of producing additional functions based on their developmental expression profiles, as reported by modENCODE. The TS score allows us to better investigate functional roles of different isoforms expressed in multi transcript genes. From this analysis, we find that isoforms with high TS scores have sequence feature changes consistent with more deterministic splicing and functional changes and tend to gain domains or whole exons which could carry additional functions. Furthermore these functions appear to be particularly important for essential regulatory roles, establishing functional isoform switching as key for regulatory processes. Based on the TS score we develop a Transcript Annotations Pipeline for Alternative Splicing (TAPAS) that identifies functional neighbourhoods of potentially interesting isoforms.ConclusionsWe have identified a subset of protein isoforms which appear to have high functional significance, particularly in regulation. This has been made possible through the development of novel methods that make use of transcript expression profiles. The methods and analyses we present here represent important first steps in the development of tools to address the near complete lack of isoform specific function annotation. In turn the tools allow us to better characterise the regulatory functions of alternative splicing in more detail.
Project description:RNA-binding proteins (RBPs) regulate splicing according to position-dependent principles, which can be exploited for analysis of regulatory motifs. Here we present RNAmotifs, a method that evaluates the sequence around differentially regulated alternative exons to identify clusters of short and degenerate sequences, referred to as multivalent RNA motifs. We show that diverse RBPs share basic positional principles, but differ in their propensity to enhance or repress exon inclusion. We assess exons differentially spliced between brain and heart, identifying known and new regulatory motifs, and predict the expression pattern of RBPs that bind these motifs. RNAmotifs is available at https://bitbucket.org/rogrro/rna_motifs.
Project description:Regulation of splicing in eukaryotes occurs through the coordinated action of multiple splicing factors. Exons and introns contain numerous putative binding sites for splicing regulatory proteins. Regulation of splicing is presumably achieved by the combinatorial output of the binding of splicing factors to the corresponding binding sites. Although putative regulatory sites often overlap, no extensive study has examined whether overlapping regulatory sequences provide yet another dimension to splicing regulation. Here we analyzed experimentally-identified splicing regulatory sequences using a computational method based on the natural distribution of nucleotides and splicing regulatory sequences. We uncovered positive and negative interplay between overlapping regulatory sequences. Examination of these overlapping motifs revealed a unique spatial distribution, especially near splice donor sites of exons with weak splice donor sites. The positively selected overlapping splicing regulatory motifs were highly conserved among different species, implying functionality. Overall, these results suggest that overlap of two splicing regulatory binding sites is an evolutionary conserved widespread mechanism of splicing regulation. Finally, over-abundant motif overlaps were experimentally tested in a reporting minigene revealing that overlaps may facilitate a mode of splicing that did not occur in the presence of only one of the two regulatory sequences that comprise it.
Project description:BACKGROUND: In this paper, we address the problem of identifying and quantifying polymorphisms in RNA-seq data when no reference genome is available, without assembling the full transcripts. Based on the fundamental idea that each polymorphism corresponds to a recognisable pattern in a De Bruijn graph constructed from the RNA-seq reads, we propose a general model for all polymorphisms in such graphs. We then introduce an exact algorithm, called KISSPLICE, to extract alternative splicing events. RESULTS: We show that KISSPLICE enables to identify more correct events than general purpose transcriptome assemblers. Additionally, on a 71 M reads dataset from human brain and liver tissues, KISSPLICE identified 3497 alternative splicing events, out of which 56% are not present in the annotations, which confirms recent estimates showing that the complexity of alternative splicing has been largely underestimated so far. CONCLUSIONS: We propose new models and algorithms for the detection of polymorphism in RNA-seq data. This opens the way to a new kind of studies on large HTS RNA-seq datasets, where the focus is not the global reconstruction of full-length transcripts, but local assembly of polymorphic regions. KISSPLICE is available for download at http://alcovna.genouest.org/kissplice/.
Project description:FUS is an RNA-binding protein that regulates transcription, alternative splicing, and mRNA transport. Aberrations of FUS are causally associated with familial and sporadic ALS/FTLD. We analyzed FUS-mediated transcriptions and alternative splicing events in mouse primary cortical neurons using exon arrays. We also characterized FUS-binding RNA sites in the mouse cerebrum with HITS-CLIP. We found that FUS-binding sites tend to form stable secondary structures. Analysis of position-dependence of FUS-binding sites disclosed scattered binding of FUS to and around the alternatively spliced exons including those associated with neurodegeneration such as Mapt, Camk2a, and Fmr1. We also found that FUS is often bound to the antisense RNA strand at the promoter regions. Global analysis of these FUS-tags and the expression profiles disclosed that binding of FUS to the promoter antisense strand downregulates transcriptions of the coding strand. Our analysis revealed that FUS regulates alternative splicing events and transcriptions in a position-dependent manner.
Project description:Assays detecting blood transcriptome changes are studied for infectious disease diagnosis. Blood-based RNA alternative splicing (AS) events, which have not been well characterized in pathogen infection, have potential normalization and assay platform stability advantages over gene expression for diagnosis. Here, we present a computational framework for developing AS diagnostic biomarkers. Leveraging a large prospective cohort of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and whole-blood RNA sequencing (RNA-seq) data, we identify a major functional AS program switch upon viral infection. Using an independent cohort, we demonstrate the improved accuracy of AS biomarkers for SARS-CoV-2 diagnosis compared with six reported transcriptome signatures. We then optimize a subset of AS-based biomarkers to develop microfluidic PCR diagnostic assays. This assay achieves nearly perfect test accuracy (61/62 = 98.4%) using a naive principal component classifier, significantly more accurate than a gene expression PCR assay in the same cohort. Therefore, our RNA splicing computational framework enables a promising avenue for host-response diagnosis of infection.
Project description:Numerous regulatory structural motifs have been identified as playing essential roles in transcriptional and post-transcriptional regulation of gene expression. RegRNA is an integrated web server for identifying the homologs of regulatory RNA motifs and elements against an input mRNA sequence. Both sequence homologs and structural homologs of regulatory RNA motifs can be recognized. The regulatory RNA motifs supported in RegRNA are categorized into several classes: (i) motifs in mRNA 5'-untranslated region (5'-UTR) and 3'-UTR; (ii) motifs involved in mRNA splicing; (iii) motifs involved in transcriptional regulation; (iv) riboswitches; (v) splicing donor/acceptor sites; (vi) inverted repeats; and (vii) miRNA target sites. The experimentally validated regulatory RNA motifs are extracted from literature survey and several regulatory RNA motif databases, such as UTRdb, TRANSFAC, alternative splicing database (ASD) and miRBase. A variety of computational programs are integrated for identifying the homologs of the regulatory RNA motifs. An intuitive user interface is designed to facilitate the comprehensive annotation of user-submitted mRNA sequences. The RegRNA web server is now available at http://RegRNA.mbc.NCTU.edu.tw/.
Project description:BACKGROUND:While the reconstruction of transcripts from a sample of RNA-Seq data is a computationally expensive and complicated task, the detection of splicing events from RNA-Seq data and a gene annotation is computationally feasible. This latter task, which is adequate for many transcriptome analyses, is usually achieved by aligning the reads to a reference genome, followed by comparing the alignments with a gene annotation, often implicitly represented by a graph: the splicing graph. RESULTS:We present ASGAL (Alternative Splicing Graph ALigner): a tool for mapping RNA-Seq data to the splicing graph, with the specific goal of detecting novel splicing events, involving either annotated or unannotated splice sites. ASGAL takes as input the annotated transcripts of a gene and a RNA-Seq sample, and computes (1) the spliced alignments of each read in input, and (2) a list of novel events with respect to the gene annotation. CONCLUSIONS:An experimental analysis shows that ASGAL allows to enrich the annotation with novel alternative splicing events even when genes in an experiment express at most one isoform. Compared with other tools which use the spliced alignment of reads against a reference genome for differential analysis, ASGAL better predicts events that use splice sites which are novel with respect to a splicing graph, showing a higher accuracy. To the best of our knowledge, ASGAL is the first tool that detects novel alternative splicing events by directly aligning reads to a splicing graph. AVAILABILITY:Source code, documentation, and data are available for download at http://asgal.algolab.eu .
Project description:Alternative splicing is a highly sophisticated process, playing a significant role in posttranscriptional gene expression and underlying the diversity and complexity of organisms. Its regulation is multilayered, including an intrinsic role of RNA structural arrangement which undergoes time- and tissue-specific alterations. In this review, we describe the principles of RNA structural arrangement and briefly decipher its cis- and trans-acting cellular modulators which serve as crucial determinants of biological functionality of the RNA structure. Subsequently, we engage in a discussion about the RNA structure-mediated mechanisms of alternative splicing regulation. On one hand, the impairment of formation of optimal RNA structures may have critical consequences for the splicing outcome and further contribute to understanding the pathomechanism of severe disorders. On the other hand, the structural aspects of RNA became significant features taken into consideration in the endeavor of finding potential therapeutic treatments. Both aspects have been addressed by us emphasizing the importance of ongoing studies in both fields.