Mutually compensatory mutations during evolution of the tetramerization domain of tumor suppressor p53 lead to impaired hetero-oligomerization.
Ontology highlight
ABSTRACT: We have measured the stability and stoichiometry of variants of the human p53 tetramerization domain to assess the effects of mutation on homo- and hetero-oligomerization. The residues chosen for mutation were those in the hydrophobic core that we had previously found to be critical for its stability but are not conserved in human p73 or p51 or in p53-related proteins from invertebrates or vertebrates. The mutations introduced were either single natural mutations or combinations of mutations present in p53-like proteins from different species. Most of the mutations were substantially destabilizing when introduced singly. The introduction of multiple mutations led to two opposite effects: some combinations of mutations that have occurred during the evolution of the hydrophobic core of the domain in p53-like proteins had additive destabilizing effects, whereas other naturally occurring combinations of mutations had little or no net effect on the stability, there being mutually compensating effects of up to 9.5 kcal/mol of tetramer. The triple mutant L332V/F341L/L344I, whose hydrophobic core represents that of the chicken p53 domain, was nearly as stable as the human domain but had impaired hetero-oligomerization with it. Thus, engineering of a functional p53 variant with a reduced capacity to hetero-oligomerize with wild-type human p53 can be achieved without any impairment in the stability and subunit affinity of the engineered homo-oligomer.
SUBMITTER: Mateu MG
PROVIDER: S-EPMC22339 | biostudies-literature | 1999 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA