Unknown

Dataset Information

0

Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes.


ABSTRACT:

Background

Extensive mapping efforts are currently underway for the establishment of comparative genomics between the model plant, Arabidopsis thaliana and various Brassica species. Most of these studies have deployed RFLP markers, the use of which is a laborious and time-consuming process. We therefore tested the efficacy of PCR-based Intron Polymorphism (IP) markers to analyze genome-wide synteny between the oilseed crop, Brassica juncea (AABB genome) and A. thaliana and analyzed the arrangement of 24 (previously described) genomic block segments in the A, B and C Brassica genomes to study the evolutionary events contributing to karyotype variations in the three diploid Brassica genomes.

Results

IP markers were highly efficient and generated easily discernable polymorphisms on agarose gels. Comparative analysis of the segmental organization of the A and B genomes of B. juncea (present study) with the A and B genomes of B. napus and B. nigra respectively (described earlier), revealed a high degree of colinearity suggesting minimal macro-level changes after polyploidization. The ancestral block arrangements that remained unaltered during evolution and the karyotype rearrangements that originated in the Oleracea lineage after its divergence from Rapa lineage were identified. Genomic rearrangements leading to the gain or loss of one chromosome each between the A-B and A-C lineages were deciphered. Complete homoeology in terms of block organization was found between three linkage groups (LG) each for the A-B and A-C genomes. Based on the homoeology shared between the A, B and C genomes, a new nomenclature for the B genome LGs was assigned to establish uniformity in the international Brassica LG nomenclature code.

Conclusion

IP markers were highly effective in generating comparative relationships between Arabidopsis and various Brassica species. Comparative genomics between the three Brassica lineages established the major rearrangements, translocations and fusions pivotal to karyotype diversification between the A, B and C genomes of Brassica species. The inter-relationships established between the Brassica lineages vis-à-vis Arabidopsis would facilitate the identification and isolation of candidate genes contributing to traits of agronomic value in crop Brassicas and the development of unified tools for Brassica genomics.

SUBMITTER: Panjabi P 

PROVIDER: S-EPMC2277410 | biostudies-literature | 2008 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes.

Panjabi Priya P   Jagannath Arun A   Bisht Naveen C NC   Padmaja K Lakshmi KL   Sharma Sarita S   Gupta Vibha V   Pradhan Akshay K AK   Pental Deepak D  

BMC genomics 20080303


<h4>Background</h4>Extensive mapping efforts are currently underway for the establishment of comparative genomics between the model plant, Arabidopsis thaliana and various Brassica species. Most of these studies have deployed RFLP markers, the use of which is a laborious and time-consuming process. We therefore tested the efficacy of PCR-based Intron Polymorphism (IP) markers to analyze genome-wide synteny between the oilseed crop, Brassica juncea (AABB genome) and A. thaliana and analyzed the a  ...[more]

Similar Datasets

| S-EPMC8423626 | biostudies-literature
| S-EPMC3210150 | biostudies-literature
| S-EPMC3121819 | biostudies-other
| S-EPMC4856438 | biostudies-literature
| S-EPMC5817878 | biostudies-other
| S-EPMC3207705 | biostudies-literature
| S-EPMC5879651 | biostudies-literature
| S-EPMC310908 | biostudies-literature
| S-EPMC6784238 | biostudies-literature
| S-EPMC1186733 | biostudies-literature