Population genetic analysis of the N-acylsphingosine amidohydrolase gene associated with mental activity in humans.
Ontology highlight
ABSTRACT: To understand the evolution of human mental activity, we performed population genetic analyses of nucleotide sequences ( approximately 11 kb) from a worldwide sample of 60 chromosomes of the N-acylsphingosine amidohydrolase (ASAH1) gene. ASAH1 hydrolyzes ceramides and regulates neuronal development, and its deficiency often results in mental retardation. In the region ( approximately 4.4 kb) encompassing exons 3 and 4 of this gene, two distinct lineages (V and M) have been segregating in the human population for 2.4 +/- 0.4 million years (MY). The persistence of these two lineages is attributed to ancient population structure of humans in Africa. However, all haplotypes belonging to the V lineage exhibit strong linkage disequilibrium, a high frequency (62%), and small nucleotide diversity (pi = 0.05%). These features indicate a signature of positive Darwinian selection for the V lineage. Compared with the orthologs in mammals and birds, it is only Val at amino acid site 72 that is found exclusively in the V lineage in humans, suggesting that this Val is a likely target of positive selection. Computer simulation confirms that demographic models of modern humans except for the ancient population structure cannot explain the presence of two distinct lineages, and neutrality is incompatible with the observed small genetic variation of the V lineage at ASAH1. On the basis of the above observations, it is argued that positive selection is possibly operating on ASAH1 in the modern human population.
SUBMITTER: Kim HL
PROVIDER: S-EPMC2278054 | biostudies-literature | 2008 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA