Histone H1 of Trypanosoma cruzi is concentrated in the nucleolus region and disperses upon phosphorylation during progression to mitosis.
Ontology highlight
ABSTRACT: Phosphorylation of histone H1 is intimately related to the cell cycle progression in higher eukaryotes, reaching maximum levels during mitosis. We have previously shown that in the flagellated protozoan Trypanosoma cruzi, which does not condense chromatin during mitosis, histone H1 is phosphorylated at a single cyclin-dependent kinase site. By using an antibody that recognizes specifically the phosphorylated T. cruzi histone H1 site, we have now confirmed that T. cruzi histone H1 is also phosphorylated in a cell cycle-dependent manner. Differently from core histones, the bulk of nonphosphorylated histone H1 in G(1) and S phases of the cell cycle is concentrated in the central regions of the nucleus, which contains the nucleolus and less densely packed chromatin. When cells pass G(2), histone H1 becomes phosphorylated and starts to diffuse. At the onset of mitosis, histone H1 phosphorylation is maximal and found in the entire nuclear space. As permeabilized parasites preferentially lose phosphorylated histone H1, we conclude that this modification promotes its release from less condensed and nucleolar chromatin after G(2).
SUBMITTER: Gutiyama LM
PROVIDER: S-EPMC2292618 | biostudies-literature | 2008 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA