Unknown

Dataset Information

0

Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory.


ABSTRACT: How the memory systems centered on the hippocampus and dorsal striatum interact to support behavior remains controversial. We used functional MRI while people learned the locations of objects by collecting and replacing them over multiple trials within a virtual environment comprising a landmark, a circular boundary, and distant cues for orientation. The relative location of landmark and boundary was occasionally changed, with specific objects paired with one or other cue, allowing dissociation of learning and performance relative to either cue. Right posterior hippocampal activation reflected learning and remembering of boundary-related locations, whereas right dorsal striatal activation reflected learning and remembering of landmark-related locations. Within the right hippocampus, anterior processing of environmental change (spatial novelty) was dissociated from posterior processing of location. Behavioral studies show that landmark-related learning obeys associative reinforcement, whereas boundary-related learning is incidental [Doeller CF, Burgess N (2008) Proc Natl Acad Sci USA 105:5909-5914]. The distinct incidental hippocampal processing of boundaries is suggestive of a "geometric module" or "cognitive map" and may explain the hippocampal support of incidental/observational learning in "declarative" or "episodic" memory versus the striatal support of trial-and-error learning in "procedural" memory. Finally, the hippocampal and striatal systems appear to combine "bottom-up," simply influencing behavior proportional to their activations, without direct interaction, with "top-down" ventromedial prefrontal involvement when both are similarly active.

SUBMITTER: Doeller CF 

PROVIDER: S-EPMC2311337 | biostudies-literature | 2008 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory.

Doeller Christian F CF   King John A JA   Burgess Neil N  

Proceedings of the National Academy of Sciences of the United States of America 20080411 15


How the memory systems centered on the hippocampus and dorsal striatum interact to support behavior remains controversial. We used functional MRI while people learned the locations of objects by collecting and replacing them over multiple trials within a virtual environment comprising a landmark, a circular boundary, and distant cues for orientation. The relative location of landmark and boundary was occasionally changed, with specific objects paired with one or other cue, allowing dissociation  ...[more]

Similar Datasets

| S-EPMC2867912 | biostudies-literature
| S-EPMC6422697 | biostudies-literature
| S-EPMC2396793 | biostudies-literature
| S-EPMC4441285 | biostudies-literature
| S-EPMC7784680 | biostudies-literature
| S-EPMC4505751 | biostudies-literature
| S-EPMC3317659 | biostudies-literature
| S-EPMC6508991 | biostudies-literature
| S-EPMC4241115 | biostudies-literature
| S-EPMC3031672 | biostudies-literature