Unknown

Dataset Information

0

Structure of the Streptococcus agalactiae family II inorganic pyrophosphatase at 2.80 A resolution.


ABSTRACT: Streptococcus agalactiae, a prokaryote that causes infections in neonates and immunocompromised adults, has a serine/threonine protein kinase (STK) signalling cascade. The structure of one of the targets, a family II inorganic pyrophosphatase, has been solved by molecular replacement and refined at 2.80 A resolution to an R factor of 19.2% (R(free) = 26.7%). The two monomers in the asymmetric unit are related by a noncrystallographic twofold axis, but the biological dimer is formed by a crystallographic twofold. Each monomer contains the pyrophosphate analogue imidodiphosphate (PNP) and three metal ions per active site: two Mn(2+) ions in sites M1 and M2 and an Mg(2+) ion in site M3. The enzyme is in the closed conformation. Like other family II enzymes, the structure consists of two domains (residues 1-191 and 198-311), with the active site located between them. The conformation of Lys298 in the active site is different from those observed previously and it coordinates to the conserved DHH motif in a unique way. The structure suggests that Ser150, Ser194, Ser195 and Ser296 are the most likely targets for the Ser/Thr kinase and phosphatase because they are surface-accessible and either in the active site or in the hinge region between the two domains.

SUBMITTER: Rantanen MK 

PROVIDER: S-EPMC2365889 | biostudies-literature | 2007 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structure of the Streptococcus agalactiae family II inorganic pyrophosphatase at 2.80 A resolution.

Rantanen Mika K MK   Lehtiö Lari L   Rajagopal Lakshmi L   Rubens Craig E CE   Goldman Adrian A  

Acta crystallographica. Section D, Biological crystallography 20070515 Pt 6


Streptococcus agalactiae, a prokaryote that causes infections in neonates and immunocompromised adults, has a serine/threonine protein kinase (STK) signalling cascade. The structure of one of the targets, a family II inorganic pyrophosphatase, has been solved by molecular replacement and refined at 2.80 A resolution to an R factor of 19.2% (R(free) = 26.7%). The two monomers in the asymmetric unit are related by a noncrystallographic twofold axis, but the biological dimer is formed by a crystall  ...[more]

Similar Datasets

| S-EPMC2242878 | biostudies-literature
| S-EPMC5894109 | biostudies-literature
| S-EPMC2045322 | biostudies-literature
| S-EPMC1303807 | biostudies-literature
| S-EPMC3151116 | biostudies-literature
| S-EPMC2142889 | biostudies-other
| S-EPMC8900733 | biostudies-literature
| S-EPMC1152772 | biostudies-other
| S-EPMC1138472 | biostudies-other
| S-EPMC2144359 | biostudies-other