Unknown

Dataset Information

0

The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation.


ABSTRACT: Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial and apparently sporadic Parkinson disease. LRRK2 is a multidomain protein kinase with autophosphorylation activity. It has previously been shown that the kinase activity of LRRK2 is required for neuronal toxicity, suggesting that understanding the mechanism of kinase activation and regulation may be important for the development of specific kinase inhibitors for Parkinson disease treatment. Here, we show that LRRK2 predominantly exists as a dimer under native conditions, a state that appears to be stabilized by multiple domain-domain interactions. Furthermore, an intact C terminus, but not N terminus, is required for autophosphorylation activity. We identify two residues in the activation loop that contribute to the regulation of LRRK2 autophosphorylation. Finally, we demonstrate that LRRK2 undergoes intramolecular autophosphorylation. Together, these results provide insight into the mechanism and regulation of LRRK2 kinase activity.

SUBMITTER: Greggio E 

PROVIDER: S-EPMC2423262 | biostudies-literature | 2008 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation.

Greggio Elisa E   Zambrano Ibardo I   Kaganovich Alice A   Beilina Alexandra A   Taymans Jean-Marc JM   Daniëls Veronique V   Lewis Patrick P   Jain Shushant S   Ding Jinhui J   Syed Ali A   Thomas Kelly J KJ   Baekelandt Veerle V   Cookson Mark R MR  

The Journal of biological chemistry 20080408 24


Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial and apparently sporadic Parkinson disease. LRRK2 is a multidomain protein kinase with autophosphorylation activity. It has previously been shown that the kinase activity of LRRK2 is required for neuronal toxicity, suggesting that understanding the mechanism of kinase activation and regulation may be important for the development of specific kinase inhibitors for Parkinson disease treatment. Here, we show that LRRK2  ...[more]

Similar Datasets

| S-EPMC3158845 | biostudies-literature
| S-EPMC1317945 | biostudies-literature
| S-EPMC6277104 | biostudies-literature
| S-EPMC4662256 | biostudies-literature
| S-EPMC9398093 | biostudies-literature
| S-EPMC3682752 | biostudies-literature
| S-EPMC8048960 | biostudies-literature
| S-EPMC4072732 | biostudies-literature
| S-EPMC8314873 | biostudies-literature
| S-EPMC6536420 | biostudies-literature