Unknown

Dataset Information

0

Pax7 is requisite for maintenance of a subpopulation of superior collicular neurons and shows a diverging expression pattern to Pax3 during superior collicular development.


ABSTRACT:

Background

Pax7 encodes a transcription factor well-established as an important determinant of mesencephalic identity and superior collicular development. Pax7 mutant mice, however, present with no obvious morphological impairments to the superior colliculus. This finding is paradoxical and has been attributed to functional redundancy afforded by its paralogue Pax3. Here we utilise Pax7 mutant mice to investigate the precise role of this important developmental regulator during superior collicular development and neuronal specification/differentiation. We also assess its spatiotemporal relationship with Pax3 during embryonic development.

Results

Analysis of the superior colliculus of Pax7 mutant and wildtype mice at a variety of developmental timepoints revealed that whilst correct initial specification is maintained, a subpopulation of dorsal mesencephalic neurons is lost at early postnatal stages. Moreover, a comparative analysis of embryonic Pax3 and Pax7 expression profiles indicate that Pax3 expression overlaps extensively with that of Pax7 initially, but their expression domains increasingly diverge as development progresses, coinciding spatiotemporally with neuronal differentiation and maturation of the tissue. Furthermore, Pax3 expression is perturbed within the CNS of embryonic Pax7 mutant mice.

Conclusion

In summary, these results demonstrate that during superior collicular development, Pax7 is required to maintain a subpopulation of dorsal, mesencephalic neurons and partially regulates, spatiotemporally, Pax3 expression within the CNS. The differential nature of Pax7 and Pax3 with respect to neuronal differentiation may have implications for future stem cell therapies aimed at exploiting their developmental capabilities.

SUBMITTER: Thompson JA 

PROVIDER: S-EPMC2430198 | biostudies-literature | 2008 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Pax7 is requisite for maintenance of a subpopulation of superior collicular neurons and shows a diverging expression pattern to Pax3 during superior collicular development.

Thompson Jennifer A JA   Zembrzycki Andreas A   Mansouri Ahmed A   Ziman Mel M  

BMC developmental biology 20080530


<h4>Background</h4>Pax7 encodes a transcription factor well-established as an important determinant of mesencephalic identity and superior collicular development. Pax7 mutant mice, however, present with no obvious morphological impairments to the superior colliculus. This finding is paradoxical and has been attributed to functional redundancy afforded by its paralogue Pax3. Here we utilise Pax7 mutant mice to investigate the precise role of this important developmental regulator during superior  ...[more]

Similar Datasets

| S-EPMC2063538 | biostudies-literature
| S-EPMC9166405 | biostudies-literature
| S-EPMC3313853 | biostudies-literature
| S-EPMC2063537 | biostudies-literature
| S-EPMC3005709 | biostudies-literature
2012-05-22 | E-GEOD-32266 | biostudies-arrayexpress
| S-EPMC9149870 | biostudies-literature
2012-05-22 | E-GEOD-25064 | biostudies-arrayexpress
2012-05-23 | GSE32266 | GEO
| S-EPMC10505178 | biostudies-literature