Biologically constrained action selection improves cognitive control in a model of the Stroop task.
Ontology highlight
ABSTRACT: The Stroop task is a paradigmatic psychological task for investigating stimulus conflict and the effect this has on response selection. The model of Cohen et al. (Cohen et al. 1990 Psychol. Rev. 97, 332-361) has hitherto provided the best account of performance in the Stroop task, but there remains certain key data that it fails to match. We show that this failure is due to the mechanism used to perform final response selection-one based on the diffusion model of choice behaviour (Ratcliff 1978 Psychol. Rev. 85, 59-108). We adapt the model to use a selection mechanism which is based on the putative human locus of final response selection, the basal ganglia/thalamo-cortical complex (Redgrave et al. 1999 Neuroscience 89, 1009-1023). This improves the match to the core human data and, additionally, makes it possible for the model to accommodate, in a principled way, additional mechanisms of cognitive control that enable better fits to the data. This work prompts a critique of the diffusion model as a mechanism of response selection, and the features that any response mechanism must possess to provide adaptive action selection. We conclude that the consideration of biologically constrained solutions to the action selection problem is vital to the understanding and improvement of cognitive models of response selection.
SUBMITTER: Stafford T
PROVIDER: S-EPMC2440779 | biostudies-literature | 2007 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA