Unknown

Dataset Information

0

Bifunctional binding of cisplatin to DNA: why does cisplatin form 1,2-intrastrand cross-links with ag but not with GA?


ABSTRACT: The bifunctional binding of the anticancer drug cisplatin to two adjacent nucleobases in DNA is modeled using density functional theory. Previous experimental studies revealed that cisplatin binding to adjacent guanine and adenine is sensitive to nucleobase sequence. Whereas AG 1,2-intrastrand cross-links are commonly observed, the analogous GA adducts are not known. This study focuses on understanding this directional preference by constructing a full reaction profile using quantum chemical simulation methods. Monofunctional and bifunctional cisplatin adducts were generated, and the transition states that connect them were located for the dinucleotides d(pApG) and d(pGpA), assuming that initial platination takes place at the guanine site. Our computer simulations reveal a significant kinetic preference for formation of the AG over the GA adduct. The activation free energies of approximately 23 kcal/mol for AG and approximately 32 kcal/mol for GA suggest that bifunctional closure is approximately 6 orders of magnitude faster for AG than for GA. A strong hydrogen bond between one of the ammine ligands of cisplatin and the 5' phosphate group of the DNA backbone is responsible for the stabilization of the transition state that affords the AG adduct. This interaction is absent in the transition state that leads to the GA adduct because the right-handed helix of the DNA backbone places the phosphate out of reach for the ammine ligand. We found only an insignificant thermodynamic difference between AG and GA adducts and conclude that the preference of AG over GA binding is largely under kinetic control. The puckering of the deoxyribose ring plays an important role in determining the energetics of the bifunctional platination products. Whereas the 3'-nucleoside remains in the native C2'-endo/C3'-exo form of B-DNA, the deoxyribose of the 5'-nucleoside always adopts the C2'-exo/C3'-endo puckering in our simulations. A detailed analysis of the energies and structures of the bifunctional adducts revealed that the observed sugar puckering patterns are necessary for platinum to bind in a relaxed coordination geometry.

SUBMITTER: Mantri Y 

PROVIDER: S-EPMC2495024 | biostudies-literature | 2007 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bifunctional binding of cisplatin to DNA: why does cisplatin form 1,2-intrastrand cross-links with ag but not with GA?

Mantri Yogita Y   Lippard Stephen J SJ   Baik Mu-Hyun MH  

Journal of the American Chemical Society 20070403 16


The bifunctional binding of the anticancer drug cisplatin to two adjacent nucleobases in DNA is modeled using density functional theory. Previous experimental studies revealed that cisplatin binding to adjacent guanine and adenine is sensitive to nucleobase sequence. Whereas AG 1,2-intrastrand cross-links are commonly observed, the analogous GA adducts are not known. This study focuses on understanding this directional preference by constructing a full reaction profile using quantum chemical sim  ...[more]

Similar Datasets

| S-EPMC3625460 | biostudies-literature
| S-EPMC3154474 | biostudies-literature
| S-EPMC113142 | biostudies-literature
| S-EPMC2129171 | biostudies-literature
| S-EPMC2567932 | biostudies-literature
| S-EPMC137981 | biostudies-literature
| S-EPMC1258167 | biostudies-literature
| S-EPMC2820889 | biostudies-other
| S-EPMC3073633 | biostudies-literature
| S-EPMC1874601 | biostudies-literature