Unknown

Dataset Information

0

Conserved residues modulate copper release in human copper chaperone Atox1.


ABSTRACT: It is unclear how the human copper (Cu) chaperone Atox1 delivers Cu to metal-binding domains of Wilson and Menkes disease proteins in the cytoplasm. To begin to address this problem, we have characterized Cu(I) release from wild-type Atox1 and two point mutants (Met(10)Ala and Lys(60)Ala). The dynamics of Cu(I) displacement from holo-Atox1 were measured by using the Cu(I) chelator bicinchonic acid (BCA) as a metal acceptor. BCA removes Cu(I) from Atox1 in a three-step process involving the bimolecular formation of an initial Atox1-Cu-BCA complex followed by dissociation of Atox1 and the binding of a second BCA to generate apo-Atox1 and Cu-BCA(2). Both mutants lose Cu(I) more readily than wild-type Atox1 because of more rapid and facile displacement of the protein from the Atox1-Cu-BCA intermediate by the second BCA. Remarkably, Cu(I) uptake from solution by BCA is much slower than the transfer from holo-Atox1, presumably because of slow dissociation of DTT-Cu complexes. These results suggest that Cu chaperones play a key role in making Cu(I) rapidly accessible to substrates and that the activated protein-metal-chelator complex may kinetically mimic the ternary chaperone-metal-target complex involved in Cu(I) transfer in vivo.

SUBMITTER: Hussain F 

PROVIDER: S-EPMC2516206 | biostudies-literature | 2008 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Conserved residues modulate copper release in human copper chaperone Atox1.

Hussain Faiza F   Olson John S JS   Wittung-Stafshede Pernilla P  

Proceedings of the National Academy of Sciences of the United States of America 20080806 32


It is unclear how the human copper (Cu) chaperone Atox1 delivers Cu to metal-binding domains of Wilson and Menkes disease proteins in the cytoplasm. To begin to address this problem, we have characterized Cu(I) release from wild-type Atox1 and two point mutants (Met(10)Ala and Lys(60)Ala). The dynamics of Cu(I) displacement from holo-Atox1 were measured by using the Cu(I) chelator bicinchonic acid (BCA) as a metal acceptor. BCA removes Cu(I) from Atox1 in a three-step process involving the bimol  ...[more]

Similar Datasets

| S-EPMC150598 | biostudies-literature
| S-EPMC3084073 | biostudies-literature
| S-EPMC6231052 | biostudies-literature
| S-EPMC9599288 | biostudies-literature
| S-EPMC9214858 | biostudies-literature
| S-EPMC6769983 | biostudies-literature
| S-EPMC3728025 | biostudies-literature
| S-EPMC5039574 | biostudies-literature
| S-EPMC7196078 | biostudies-literature
| S-EPMC4581165 | biostudies-literature