Unknown

Dataset Information

0

From microarray to biology: an integrated experimental, statistical and in silico analysis of how the extracellular matrix modulates the phenotype of cancer cells.


ABSTRACT: A statistically robust and biologically-based approach for analysis of microarray data is described that integrates independent biological knowledge and data with a global F-test for finding genes of interest that minimizes the need for replicates when used for hypothesis generation. First, each microarray is normalized to its noise level around zero. The microarray dataset is then globally adjusted by robust linear regression. Second, genes of interest that capture significant responses to experimental conditions are selected by finding those that express significantly higher variance than those expressing only technical variability. Clustering expression data and identifying expression-independent properties of genes of interest including upstream transcriptional regulatory elements (TREs), ontologies and networks or pathways organizes the data into a biologically meaningful system. We demonstrate that when the number of genes of interest is inconveniently large, identifying a subset of "beacon genes" representing the largest changes will identify pathways or networks altered by biological manipulation. The entire dataset is then used to complete the picture outlined by the "beacon genes." This allow construction of a structured model of a system that can generate biologically testable hypotheses. We illustrate this approach by comparing cells cultured on plastic or an extracellular matrix which organizes a dataset of over 2,000 genes of interest from a genome wide scan of transcription. The resulting model was confirmed by comparing the predicted pattern of TREs with experimental determination of active transcription factors.

SUBMITTER: Dozmorov MG 

PROVIDER: S-EPMC2537575 | biostudies-literature | 2008 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

From microarray to biology: an integrated experimental, statistical and in silico analysis of how the extracellular matrix modulates the phenotype of cancer cells.

Dozmorov Mikhail G MG   Kyker Kimberly D KD   Hauser Paul J PJ   Saban Ricardo R   Buethe David D DD   Dozmorov Igor I   Centola Michael B MB   Culkin Daniel J DJ   Hurst Robert E RE  

BMC bioinformatics 20080812


A statistically robust and biologically-based approach for analysis of microarray data is described that integrates independent biological knowledge and data with a global F-test for finding genes of interest that minimizes the need for replicates when used for hypothesis generation. First, each microarray is normalized to its noise level around zero. The microarray dataset is then globally adjusted by robust linear regression. Second, genes of interest that capture significant responses to expe  ...[more]

Similar Datasets

| S-EPMC6853938 | biostudies-literature
| S-EPMC6527347 | biostudies-literature
| S-EPMC11361265 | biostudies-literature
| S-EPMC5689118 | biostudies-literature
| S-EPMC4264927 | biostudies-literature
| S-EPMC8735670 | biostudies-literature
| S-EPMC9772079 | biostudies-literature
| S-EPMC2702158 | biostudies-literature
| S-EPMC5769982 | biostudies-literature
| S-EPMC6450457 | biostudies-literature