Unknown

Dataset Information

0

Structural determinants of monohydroxylated bile acids to activate beta 1 subunit-containing BK channels.


ABSTRACT: Lithocholate (LC) (10-300 microM) in physiological solution is sensed by vascular myocyte large conductance, calcium- and voltage-gated potassium (BK) channel beta(1) accessory subunits, leading to channel activation and arterial dilation. However, the structural features in steroid and target that determine LC action are unknown. We tested LC and close analogs on BK channel (pore-forming cbv1+beta(1) subunits) activity using the product of the number of functional ion channels in the membrane patch (N) and the open channel probability (Po). LC (5beta-cholanic acid-3alpha-ol), 5alpha-cholanic acid-3alpha-ol, and 5beta-cholanic acid-3beta-ol increased NPo (EC(50) approximately 45 microM). At maximal increase in NPo, LC increased NPo by 180%, whereas 5alpha-cholanic acid-3alpha-ol and 5beta-cholanic acid-3beta-ol raised NPo by 40%. Thus, the alpha-hydroxyl and the cis A-B ring junction are both required for robust channel potentiation. Lacking both features, 5alpha-cholanic acid-3beta-ol and 5-cholenic acid-3beta-ol were inactive. Three-dimensional structures show that only LC displays a bean shape with clear-cut convex and concave hemispheres; 5alpha-cholanic acid-3alpha-ol and 5beta-cholanic acid-3beta-ol partially matched LC shape, and 5alpha-cholanic acid-3beta-ol and 5-cholenic acid-3beta-ol did not. Increasing polarity in steroid rings (5beta-cholanic acid-3alpha-sulfate) or reducing polarity in lateral chain (5beta-cholanic acid 3alpha-ol methyl ester) rendered poorly active compounds, consistent with steroid insertion between beta(1) and bilayer lipids, with the steroid-charged tail near the aqueous phase. Molecular dynamics identified two regions in beta(1) transmembrane domain 2 that meet unique requirements for bonding with the LC concave hemisphere, where the steroid functional groups are located.

SUBMITTER: Bukiya AN 

PROVIDER: S-EPMC2563214 | biostudies-literature | 2008 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structural determinants of monohydroxylated bile acids to activate beta 1 subunit-containing BK channels.

Bukiya Anna N AN   McMillan Jacob J   Parrill Abby L AL   Dopico Alejandro M AM  

Journal of lipid research 20080723 11


Lithocholate (LC) (10-300 microM) in physiological solution is sensed by vascular myocyte large conductance, calcium- and voltage-gated potassium (BK) channel beta(1) accessory subunits, leading to channel activation and arterial dilation. However, the structural features in steroid and target that determine LC action are unknown. We tested LC and close analogs on BK channel (pore-forming cbv1+beta(1) subunits) activity using the product of the number of functional ion channels in the membrane p  ...[more]

Similar Datasets

| S-EPMC2151511 | biostudies-literature
| S-EPMC3961013 | biostudies-literature
| S-EPMC3396499 | biostudies-literature
| S-EPMC5137720 | biostudies-literature
| S-EPMC2860586 | biostudies-literature
| S-EPMC2084332 | biostudies-literature
| S-EPMC5089933 | biostudies-literature