Project description:The zur regulon in Neisseria meningitidis was elucidated in the strain MC58 using a zur knockout strain and conditions which activate Zur ( zinc supplementation in the medium)
Project description:NMB0315 is an outer membrane protein of Neisseria meningitidis serogroup B (NMB) and a potential candidate for a broad-spectrum vaccine against meningococcal disease. The crystal structure of NMB0315 was solved by single-wavelength anomalous dispersion (SAD) at a resolution of 2.4 Å and revealed to be a lysostaphin-type peptidase of the M23 metallopeptidase family. The overall structure consists of three well-separated domains and has no similarity to any previously published structure. However, only the topology of the carboxyl-terminal domain is highly conserved among members of this family, and this domain is a zinc-dependent catalytic unit. The amino-terminal domain of the structure blocks the substrate binding pocket in the carboxyl-terminal domain, indicating that the wild-type full-length protein is in an inactive conformational state. Our studies improve the understanding of the catalytic mechanism of M23 metallopeptidases.
Project description:There is currently no comprehensive meningococcal vaccine, due to difficulties in immunizing against organisms expressing serogroup B capsules. To address this problem, subcapsular antigens, particularly the outer-membrane proteins (OMPs), are being investigated as candidate vaccine components. If immunogenic, however, such antigens are often antigenically variable, and knowledge of the extent and structuring of this diversity is an essential part of vaccine formulation. Factor H-binding protein (fHbp) is one such protein and is included in two vaccines under development. A survey of the diversity of the fHbp gene and the encoded protein in a representative sample of meningococcal isolates confirmed that variability in this protein is structured into two or three major groups, each with a substantial number of alleles that have some association with meningococcal clonal complexes and serogroups. A unified nomenclature scheme was devised to catalogue this diversity. Analysis of recombination and selection on the allele sequences demonstrated that parts of the gene are subject to positive selection, consistent with immune selection on the protein generating antigenic variation, particularly in the C-terminal region of the peptide sequence. The highest levels of selection were observed in regions corresponding to epitopes recognized by previously described bactericidal monoclonal antibodies.
Project description:BackgroundSeveral mutations have been described as responsible for rifampicin resistance in Neisseria meningitidis. However, the intriguing question on why these strains are so rare remains open. The aim of this study was to investigate the protein content and to identify differential expression in specific proteins in two rifampicin resistant and one susceptible meningococci using two-dimensional electrophoresis (2-DE) combined with mass spectrometry.ResultsIn our experimental conditions, able to resolve soluble proteins with an isoelectric point between 4 and 7, twenty-three proteins have been found differentially expressed in the two resistant strains compared to the susceptible. Some of them, involved in the main metabolic pathways, showed an increased expression, mainly in the catabolism of pyruvate and in the tricarboxylic acid cycle. A decreased expression of proteins belonging to gene regulation and to those involved in the folding of polypeptides has also been observed. 2-DE analysis showed the presence of four proteins displaying a shift in their isoelectric point in both resistant strains, confirmed by the presence of amino acid changes in the sequence analysis, absent in the susceptible.ConclusionsThe analysis of differentially expressed proteins suggests that an intricate series of events occurs in N. meningitidis rifampicin resistant strains and the results here reported may be considered a starting point in understanding their decreased invasion capacity. In fact, they support the hypothesis that the presence of more than one protein differentially expressed, having a role in the metabolism of the meningococcus, influences its ability to infect and to spread in the population. Different reports have described and discussed how a drug resistant pathogen shows a high biological cost for survival and that may also explain why, for some pathogens, the rate of resistant organisms is relatively low considering the widespread use of a particular drug. This seems the case of rifampicin resistant meningococci.
Project description:The genetic diversity of porB genes from meningococcal isolates characterized as serotype 22 was investigated by gene sequencing. This procedure identified seven distinct porB sequences, demonstrating variation in the PorB protein recognized by the serotype 22 monoclonal antibody. This is consistent with the genetic heterogeneity of serotype 22 meningococci reported previously.
Project description:BackgroundThe NMB0736 gene of Neisseria meningitidis serogroup B strain MC58 encodes the putative nitrogen regulatory protein, IIANtr (abbreviated to NM-IIANtr). The homologous protein present in Escherichia coli is implicated in the control of nitrogen assimilation. As part of a structural proteomics approach to the study of pathogenic Neisseria spp., we have selected this protein for structure determination by X-ray crystallography.ResultsThe NM-IIANtr was over-expressed in E. coli and was shown to be partially mono-phosphorylated, as assessed by mass spectrometry of the purified protein. Crystals of un-phosphorylated protein were obtained and diffraction data collected to 2.5 A resolution. The structure of NM-IIANtr was solved by molecular replacement using the coordinates of the E. coli nitrogen regulatory protein IIAntr [PDB: 1A6J] as the starting model. The overall fold of the Neisseria enzyme shows a high degree of similarity to the IIANtr from E. coli, and the position of the phosphoryl acceptor histidine residue (H67) is conserved. The orientation of an adjacent arginine residue (R69) suggests that it may also be involved in coordinating the phosphate group. Comparison of the structure with that of E. coli IIAmtl complexed with HPr [PDB: 1J6T] indicates that NM-IIANtr binds in a similar way to the HPr-like enzyme in Neisseria.ConclusionThe structure of NM-IIANtr confirms its assignment as a homologue of the IIANtr proteins found in a range of other Gram-negative bacteria. We conclude that the NM- IIANtr protein functions as part of a phosphorylation cascade which, in contrast to E. coli, shares the upstream phosphotransfer protein with the sugar uptake phosphoenolpyruvate:sugar phosphotransferase system (PTS), but in common with E. coli has a distinct downstream effector mechanism.
Project description:Neisseria meningitidis serogroup B is a pathogen that can infect diverse sites within the human host. According to the N. meningitidis genomic information and experimental observations glucose can be completely catabolized through the Entner-Doudoroff pathway and the pentose phosphate pathway. The Embden-Meyerhof-Parnas pathway is not functional, because the gene for phosphofructokinase is not present. The phylogenetic distribution of phosphofructokinase indicates that in most obligate aerobic organisms PFK is lacking. We conclude that this is because of the limited contribution of PFK to the energy supply in aerobically grown organisms in comparison with the energy generated through oxidative phosphorylation. Under anaerobic or microaerobic conditions the available energy is limiting and PFK provides an advantage, which explains the presence of PFK in many (facultative) anaerobic organisms. In accordance with this, in silico flux balance analysis predicted an increase of biomass yield as a result of PFK expression. However, analysis of a genetically engineered N. meningitidis strain that expresses a heterologous phosphofructokinase showed that the yield of biomass on substrate decreased in comparison with a pfkA deficient control strain, which was associated mainly with an increase in CO2 production, whereas production of by-products was comparable between the two strains. This might explain why the pfkA gene has not been obtained by horizontal gene transfer, since it is initially unfavourable for biomass yield. No large effects related to heterologous expression of pfkA were observed in the transcriptome. Although our results suggest that introduction of PFK does not contribute to a more efficient strain in terms of biomass yield, achievement of a robust, optimal metabolic network that enables a higher growth rate or a higher biomass yield, might be possible after adaptive evolution of the strain, which remains to be investigated.
Project description:Despite the increasing popularity of multilocus sequence typing (MLST), the most appropriate method for characterizing bacterial variation and facilitating epidemiological investigations remains a matter of debate. Here, we propose that different typing schemes should be compared on the basis of their power to infer clonal relationships and investigate the utility of sequence data for genealogical reconstruction by exploiting new statistical tools and data from 20 housekeeping loci for 93 isolates of the bacterial pathogen Neisseria meningitidis. Our analysis demonstrated that all but one of the hyperinvasive isolates established by multilocus enzyme electrophoresis and MLST were grouped into one of six genealogical lineages, each of which contained substantial variation. Due to the confounding effect of recombination, evolutionary relationships among these lineages remained unclear, even using 20 loci. Analyses of the seven loci in the standard MLST scheme using the same methods reproduced this classification, but were unable to support finer inferences concerning the relationships between the members within each complex.
Project description:Neisseria meningitidis usually lives as a commensal bacterium in the upper airways of humans. However, occasionally some strains can also cause life-threatening diseases such as sepsis and bacterial meningitis. Comparative genomics demonstrates that only very subtle genetic differences between carriage and disease strains might be responsible for the observed virulence differences and that N. meningitidis is, evolutionarily, a very recent species. Comparative genome sequencing also revealed a panoply of genetic mechanisms underlying its enormous genomic flexibility which also might affect the virulence of particular strains. From these studies, N. meningitidis emerges as a paradigm for organisms that use genome variability as an adaptation to changing and thus challenging environments.