Unknown

Dataset Information

0

Models of toxic beta-sheet channels of protegrin-1 suggest a common subunit organization motif shared with toxic alzheimer beta-amyloid ion channels.


ABSTRACT: Antimicrobial peptides (AMPs) induce cytotoxicity by altering membrane permeability. The electrical properties of membrane-associated AMPs as well as their cellular effects have been extensively documented; however their three-dimensional structure is poorly understood. Gaining insight into channel structures is important to the understanding of the protegrin-1 (PG-1) and other AMP cytolytic mechanisms, and to antibiotics design. We studied the beta-sheet channels morphology using molecular dynamics simulations. We modeled PG-1 channels as intrinsic barrel-stave and toroidal membrane pores, and simulated them in zwitterionic and anionic lipid bilayers. PG-1 channels consist of eight beta-hairpins in a consecutive NCCN (N and C represent the beta-hairpin's N- and C-termini) packing organization yielding antiparallel and parallel beta-sheet channels. Both channels preserve the toroidal, but not the barrel-stave pores. The two lipid leaflets of the bilayer bend toward each other at the channels' edges, producing a semitoroidal pore with the outward-pointing hydrophobic residues preventing the polar lipid headgroups from moving to the bilayer center. In all simulated lipid environments, PG-1 channels divide into four or five beta-sheet subunits consisting of single or dimeric beta-hairpins. The channel morphology with subunit organization is consistent with the four to five subunits observed by NMR in the POPE/POPG bilayer. Remarkably, a beta-sheet subunit channel motif is in agreement with Alzheimer ion channels modeled using the universal U-shape beta-strand-turn-beta-strand structure, as well as with high resolution atomic force microscopy images of beta-amyloid channels with four to six subunits. Consistent with the toxic beta-amyloid channels that are ion-conducting, the PG-1 channels permeate anions.

SUBMITTER: Jang H 

PROVIDER: S-EPMC2576390 | biostudies-literature | 2008 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Models of toxic beta-sheet channels of protegrin-1 suggest a common subunit organization motif shared with toxic alzheimer beta-amyloid ion channels.

Jang Hyunbum H   Ma Buyong B   Lal Ratnesh R   Nussinov Ruth R  

Biophysical journal 20080815 10


Antimicrobial peptides (AMPs) induce cytotoxicity by altering membrane permeability. The electrical properties of membrane-associated AMPs as well as their cellular effects have been extensively documented; however their three-dimensional structure is poorly understood. Gaining insight into channel structures is important to the understanding of the protegrin-1 (PG-1) and other AMP cytolytic mechanisms, and to antibiotics design. We studied the beta-sheet channels morphology using molecular dyna  ...[more]

Similar Datasets

| S-EPMC2908347 | biostudies-literature
| S-EPMC2142598 | biostudies-other
| S-EPMC2784570 | biostudies-literature
| S-EPMC4418460 | biostudies-literature
| S-EPMC5290535 | biostudies-literature
| S-EPMC2593858 | biostudies-literature
| S-EPMC2652689 | biostudies-literature
| S-EPMC2781705 | biostudies-literature
| S-EPMC2978638 | biostudies-literature
| S-EPMC2596933 | biostudies-literature