Osteoblastic regulation of B lymphopoiesis is mediated by Gs{alpha}-dependent signaling pathways.
Ontology highlight
ABSTRACT: Osteoblasts play an increasingly recognized role in supporting hematopoietic development and recently have been implicated in the regulation of B lymphopoiesis. Here we demonstrate that the heterotrimeric G protein alpha subunit G(s)alpha is required in cells of the osteoblast lineage for normal postnatal B lymphocyte production. Deletion of G(s)alpha early in the osteoblast lineage results in a 59% decrease in the percentage of B cell precursors in the bone marrow. Analysis of peripheral blood from mutant mice revealed a 67% decrease in the number of circulating B lymphocytes by 10 days of age. Strikingly, other mature hematopoietic lineages are not decreased significantly. Mice lacking G(s)alpha in cells of the osteoblast lineage exhibit a reduction in pro-B and pre-B cells. Furthermore, interleukin (IL)-7 expression is attenuated in G(s)alpha-deficient osteoblasts, and exogenous IL-7 is able to restore B cell precursor populations in the bone marrow of mutant mice. Finally, the defect in B lymphopoiesis can be rescued by transplantation into a WT microenvironment. These findings confirm that osteoblasts are an important component of the B lymphocyte niche and demonstrate in vivo that G(s)alpha-dependent signaling pathways in cells of the osteoblast lineage extrinsically regulate bone marrow B lymphopoiesis, at least partially in an IL-7-dependent manner.
SUBMITTER: Wu JY
PROVIDER: S-EPMC2579363 | biostudies-literature | 2008 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA