Structure/function of the inhibition of human 3beta-hydroxysteroid dehydrogenase type 1 and type 2 by trilostane.
Ontology highlight
ABSTRACT: The human type 1 (placenta, breast tumors) and type 2 (gonads, adrenals) isoforms of 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD) are key enzymes in biosynthesis of all active steroid hormones. Human 3beta-HSD1 is a critical enzyme in the conversion of DHEA to estradiol in breast tumors and may be a major target enzyme for the treatment of breast cancer. 3beta-HSD2 participates in the production of cortisol and aldosterone in the human adrenal gland. The goals of this project are to evaluate the role of the 2alpha-cyano group on trilostane (2alpha-cyano-4alpha,5alpha-epoxy-17beta-ol-androstane-3-one) and determine which amino acids may be critical for 3beta-HSD1 specificity. Trilostane without the 2alpha-cyano group, 4alpha,5alpha-epoxy-testosterone, was synthesized. Using our structural model of 3beta-HSD1, trilostane or 4alpha,5alpha-epoxy-testosterone was docked in the active site using Autodock 3.0, and the potentially critical residues (Met187 and Ser124) were identified. The M187T and S124T mutants of 3beta-HSD1 were created, expressed and purified. Dixon analyses of the inhibition of wild-type 3beta-HSD1, 3beta-HSD2, M187T and S124T by trilostane and 4alpha,5alpha-epoxy-testosterone suggest that the 2alpha-cyano group of trilostane is anchored by Ser124 in both isoenzymes. Kinetic analyses of cofactor and substrate utilization as well as the inhibition kinetics of M187T and the wild-type enzymes suggest that the 16-fold higher-affinity inhibition of 3beta-HSD1 by trilostane may be related to the presence of Met187 in 3beta-HSD1 and Thr187 in 3beta-HSD2. This structure/function information may lead to the production of more highly specific inhibitors of 3beta-HSD1 to block the hormone-dependent growth of breast tumors.
SUBMITTER: Thomas JL
PROVIDER: S-EPMC2580795 | biostudies-literature | 2008 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA