ABSTRACT: Oxidoreduction in ferritin protein nanocages occurs at sites that bind two Fe(II) substrate ions and O(2), releasing Fe(III)(2)-O products, the biomineral precursors. Diferric peroxo intermediates form in ferritins and in the related diiron cofactor oxygenases. Cofactor iron is retained at diiron sites throughout catalysis, contrasting with ferritin. Four of the 6 active site residues are the same in ferritins and diiron oxygenases; ferritin-specific Gln(137) and variable Asp/Ser/Ala(140) substitute for Glu and His, respectively, in diiron cofactor active sites. To understand the selective functions of diiron substrate and diiron cofactor active site residues, we compared oxidoreductase activity in ferritin with diiron cofactor residues, Gln(137) --> Glu and Asp(140) --> His, to ferritin with natural diiron substrate site variations, Asp(140), Ser(140), or Ala(140). In Gln(137) --> Glu ferritin, diferric peroxo intermediates were undetectable; an altered Fe(III)-O product formed, DeltaA(350) = 50% of wild type. In Asp(140) --> His ferritin, diferric peroxo intermediates were also undetectable, and Fe(II) oxidation rates decreased 40-fold. Ferritin with Asp(140), Ser(140), or Ala(140) formed diferric peroxo intermediates with variable kinetic stabilities and rates: t(1/2) varied 1- to 10-fold; k(cat) varied approximately 2- to 3-fold. Thus, relatively small differences in diiron protein catalytic sites determine whether, and for how long, diferric peroxo intermediates form, and whether the Fe-active site bonds persist throughout the reaction cycle (diiron cofactors) or break to release Fe(III)(2)-O products (diiron substrates). The results and the coding similarities for cofactor and substrate site residues-e.g., Glu/Gln and His/Asp pairs share 2 of 3 nucleotides-illustrate the potential simplicity of evolving active sites for diiron cofactors or diiron substrates.