Characterization of two distinct adducts in the reaction of a nonheme diiron(II) complex with O2.
Ontology highlight
ABSTRACT: Two [Fe(II)(2)(N-EtHPTB)(mu-O(2)X)](2+) complexes, where N-EtHPTB is the anion of N,N,N'N'-tetrakis(2-benzimidazolylmethyl)-2-hydroxy-1,3-diaminopropane and O(2)X is O(2)PPh(2) (1 x O(2)PPh(2)) or O(2)AsMe(2) (1 x O(2)AsMe(2)), have been synthesized. Their crystal structures both show interiron distances of 3.54 A that arise from a (mu-alkoxo)diiron(II) core supported by an O(2)X bridge. These diiron(II) complexes react with O(2) at low temperatures in MeCN (-40 degrees C) and CH(2)Cl(2) (-60 degrees C) to form long-lived O(2) adducts that are best described as (mu-eta(1):eta(1)-peroxo)diiron(III) species (2 x O(2)X) with nu(O-O) approximately 850 cm(-1). Upon warming to -30 degrees C, 2 x O(2)PPh(2) converts irreversibly to a second (mu-eta(1):eta(1)-peroxo)diiron(III) intermediate (3 x O(2)PPh(2)) with nu(O-O) approximately 900 cm(-1), a value which matches that reported for [Fe(2)(N-EtHPTB)(O(2))(O(2)CPh)](2+) (3 x O(2)CPh) (Dong et al. J. Am. Chem. Soc. 1993, 115, 1851-1859). Mossbauer spectra of 2 x O(2)PPh(2) and 3 x O(2)PPh(2) indicate that the iron centers within each species are antiferromagnetically coupled with J approximately 60 cm(-1), while extended X-ray absorption fine structure analysis reveals interiron distances of 3.25 and 3.47 A for 2 x O(2)PPh(2) and 3 x O(2)PPh(2), respectively. A similarly short interiron distance (3.27 A) is found for 2 x O(2)AsMe(2). The shorter interiron distance associated with 2 x O(2)PPh(2) and 2 x O(2)AsMe(2) is proposed to derive from a triply bridged diiron(III) species with alkoxo (from N-EtHPTB), 1,2-peroxo, and 1,3-O(2)X bridges, while the longer distance associated with 3 x O(2)PPh(2) results from the shift of the O(2)PPh(2) bridge to a terminal position on one iron. The differences in nu(O-O) are also consistent with the different interiron distances. It is suggested that the O...O bite distance of the O(2)X moiety affects the thermal stability of 2 x O(2)X, with the O(2)X having the largest bite distance (O(2)AsMe(2)) favoring the 2 x O(2)X adduct and the O(2)X having the smallest bite distance (O(2)CPh) favoring the 3 x O(2)X adduct. Interestingly, neither 3 x O(2)AsMe(2) nor the benzoate analog of 2 x O(2)X (2 x O(2)Bz) are observed.
SUBMITTER: Frisch JR
PROVIDER: S-EPMC2846601 | biostudies-literature | 2009 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA