Unknown

Dataset Information

0

Synthesis and characterization of ruthenium bis(beta-diketonato) pyridine-imidazole complexes for hydrogen atom transfer.


ABSTRACT: Ruthenium bis(beta-diketonato) complexes have been prepared at both the RuII and RuIII oxidation levels and with protonated and deprotonated pyridine-imidazole ligands. RuII(acac)2(py-imH) (1), [RuIII(acac)2(py-imH)]OTf (2), RuIII(acac)2(py-im) (3), RuII(hfac)2(py-imH) (4), and [DBU-H][RuII(hfac)2(py-im)] (5) have been fully characterized, including X-ray crystal structures (acac = 2,4-pentanedionato, hfac = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionato, py-imH = 2-(2'-pyridyl)imidazole, DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene). For the acac-imidazole complexes 1 and 2, cyclic voltammetry in MeCN shows the RuIII/II reduction potential (E1/2) to be -0.64 V versus Cp2Fe+/0. E1/2 for the deprotonated imidazolate complex 3 (-1.00 V) is 0.36 V more negative. The RuII bis-hfac analogues 4 and 5 show the same DeltaE1/2 = 0.36 V but are 0.93 V harder to oxidize than the acac derivatives (0.29 and -0.07 V). The difference in acidity between the acac and hfac derivatives is much smaller, with pKa values of 22.1 and 19.3 in MeCN for 1 and 4, respectively. From the E1/2 and pKa values, the bond dissociation free energies (BDFEs) of the N-H bonds in 1 and 4 are calculated to be 62.0 and 79.6 kcal mol(-1) in MeCN - a remarkable difference of 17.6 kcal mol(-1) for such structurally similar compounds. Consistent with these values, there is a facile net hydrogen atom transfer from 1 to TEMPO* (2,2,6,6-tetramethylpiperidine-1-oxyl radical) to give 3 and TEMPO-H. The DeltaG degrees for this reaction is -4.5 kcal mol(-1). 4 is not oxidized by TEMPO* (DeltaG degrees = +13.1 kcal mol(-1)), but in the reverse direction TEMPO-H readily reduces in situ generated RuIII(hfac)2(py-im) (6). A RuII-imidazoline analogue of 1, RuII(acac)2(py-imnH) (7), reacts with 3 equiv of TEMPO* to give the imidazolate 3 and TEMPO-H, with dehydrogenation of the imidazoline ring.

SUBMITTER: Wu A 

PROVIDER: S-EPMC2596074 | biostudies-literature | 2007 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Synthesis and characterization of ruthenium bis(beta-diketonato) pyridine-imidazole complexes for hydrogen atom transfer.

Wu Adam A   Masland Joshua J   Swartz Rodney D RD   Kaminsky Werner W   Mayer James M JM  

Inorganic chemistry 20071201 26


Ruthenium bis(beta-diketonato) complexes have been prepared at both the RuII and RuIII oxidation levels and with protonated and deprotonated pyridine-imidazole ligands. RuII(acac)2(py-imH) (1), [RuIII(acac)2(py-imH)]OTf (2), RuIII(acac)2(py-im) (3), RuII(hfac)2(py-imH) (4), and [DBU-H][RuII(hfac)2(py-im)] (5) have been fully characterized, including X-ray crystal structures (acac = 2,4-pentanedionato, hfac = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionato, py-imH = 2-(2'-pyridyl)imidazole, DBU = 1,8-d  ...[more]

Similar Datasets

| S-EPMC8048662 | biostudies-literature
| S-EPMC8453837 | biostudies-literature
| S-EPMC8353630 | biostudies-literature
| S-EPMC6839806 | biostudies-literature
| S-EPMC3002019 | biostudies-literature
| S-EPMC2628630 | biostudies-literature
| S-EPMC4660957 | biostudies-literature
| S-EPMC395990 | biostudies-literature
| S-EPMC7421780 | biostudies-literature
| S-EPMC7197025 | biostudies-literature