Project description:Mycobacterium avium subsp. hominissuis is an opportunistic pathogen present in soil and dust. We report M. avium subsp. hominissuis infection found in a domestic rabbit in Hannover, Germany, in May 2017.
Project description:"Mycobacterium avium subsp. hominissuis" is a robust and pervasive environmental bacterium that can cause opportunistic infections in humans. The bacterium overcomes the host immune response and is capable of surviving and replicating within host macrophages. Little is known about the bacterial mechanisms that facilitate these processes, but it can be expected that surface-exposed proteins play an important role. In this study, the selective biotinylation of surface-exposed proteins, streptavidin affinity purification, and shotgun mass spectrometry were used to characterize the surface-exposed proteome of M. avium subsp. hominissuis. This analysis detected more than 100 proteins exposed at the bacterial surface of M. avium subsp. hominissuis. Comparisons of surface-exposed proteins between conditions simulating early infection identified several groups of proteins whose presence on the bacterial surface was either constitutive or appeared to be unique to specific culture conditions. This proteomic profile facilitates an improved understanding of M. avium subsp. hominissuis and how it establishes infection. Additionally, surface-exposed proteins are excellent targets for the host adaptive immune system, and their identification can inform the development of novel treatments, diagnostic tools, and vaccines for mycobacterial disease.
Project description:BackgroundMany efforts have been made to understand basal mechanisms of mycobacterial infections. Macrophages are the first line of host immune defence to encounter and eradicate mycobacteria. Pathogenic species have evolved different mechanisms to evade host response, e.g. by influencing macrophage apoptotic pathways. However, the underlying molecular regulation is not fully understood. A new layer of eukaryotic regulation of gene expression is constituted by microRNAs. Therefore, we present a comprehensive study for identification of these key regulators and their targets in the context of host macrophage response to mycobacterial infections.Methodology/principal findingsWe performed microRNA as well as mRNA expression analysis of human monocyte derived macrophages infected with several Mycobacterium avium hominissuis strains by means of microarrays as well as quantitative reverse transcription PCR (qRT-PCR). The data revealed the ability of all strains to inhibit apoptosis by transcriptional regulation of BCL2 family members. Accordingly, at 48 h after infection macrophages infected with all M. avium strains showed significantly decreased caspase 3 and 7 activities compared to the controls. Expression of let-7e, miR-29a and miR-886-5p were increased in response to mycobacterial infection at 48 h. The integrated analysis of microRNA and mRNA expression as well as target prediction pointed out regulative networks identifying caspase 3 and 7 as potential targets of let-7e and miR-29a, respectively. Consecutive reporter assays verified the regulation of caspase 3 and 7 by these microRNAs.Conclusions/significanceWe show for the first time that mycobacterial infection of human macrophages causes a specific microRNA response. We furthermore outlined a regulatory network of potential interactions between microRNAs and mRNAs. This study provides a theoretical concept for unveiling how distinct mycobacteria could manipulate host cell response. In addition, functional relevance was confirmed by uncovering the control of major caspases 3 and 7 by let-7e and miR-29a, respectively.
Project description:Mycobacterium avium complex (MAC) causes mainly two types of disease. The first is disseminated disease in immunocompromised hosts, such as individuals infected by human immunodeficiency virus (HIV). The second is pulmonary disease in individuals without systemic immunosuppression, and the incidence of this type is increasing worldwide. M. avium subsp. hominissuis, a component of MAC, causes infection in pigs as well as in humans. Many aspects of the different modes of M. avium infection and its host specificity remain unclear. Here, we report the characteristics and complete sequence of a novel plasmid, designated pMAH135, derived from M. avium strain TH135 in an HIV-negative patient with pulmonary MAC disease. The pMAH135 plasmid consists of 194,711 nucleotides with an average G + C content of 66.5% and encodes 164 coding sequences (CDSs). This plasmid was unique in terms of its homology to other mycobacterial plasmids. Interestingly, it contains CDSs with sequence homology to mycobactin biosynthesis proteins and type VII secretion system-related proteins, which are involved in the pathogenicity of mycobacteria. It also contains putative conserved domains of the multidrug efflux transporter. Screening of isolates from humans and pigs for genes located on pMAH135 revealed that the detection rate of these genes was higher in clinical isolates from pulmonary MAC disease patients than in those from HIV-positive patients, whereas the genes were almost entirely absent in isolates from pigs. Moreover, variable number tandem repeats typing analysis showed that isolates carrying pMAH135 genes are grouped in a specific cluster. Collectively, the pMAH135 plasmid contains genes associated with M. avium's pathogenicity and resistance to antimicrobial agents. The results of this study suggest that pMAH135 influence not only the pathological manifestations of MAC disease, but also the host specificity of MAC infection.
Project description:The host response to mycobacterial infections was studied after infection of macrophages derived from primary human monocytes. mRNA and miRNA expression studies were performed to identify key regulators of immune defence and their targets.
Project description:In current literature, data assessing the acid-base equilibrium in animals and humans during bacterial infection are rare. This study aimed to evaluate acid-base deteriorations in growing goats with experimentally induced NTM (nontuberculous mycobacteria) infections by application of the traditional Henderson-Hasselbalch approach and the strong ion model. NTM-challenged animals were orally inoculated with either Mycobacterium avium subsp. hominissuis (MAH; n = 18) or Mycobacterium avium subsp. paratuberculosis (MAP; n = 48). Twenty-five goats served as non-infected controls. Until 51st week post-inoculation (wpi), blood gas analysis, serum biochemical analysis, and serum electrophoresis were performed on venous blood. Fifty percent (9/18) of goats inoculated with MAH developed acute clinical signs like apathy, fever, and diarrhea. Those animals died or had to be euthanized within 11 weeks post-inoculation. This acute form of NTM-infection was characterized by significantly lower concentrations of sodium, calcium, albumin, and total protein, as well as significantly higher concentrations of gamma globulin, associated with reduced albumin/globulin ratio. Acid-base status indicated alkalosis, but normal base excess and HCO3- concentrations, besides significantly reduced levels of SID (strong ion difference), Atot Alb (total plasma concentration of weak non-volatile acids, based on albumin), Atot TP (Atot based on total protein) and markedly lower SIG (strong ion gap). The remaining fifty percent (9/18) of MAH-infected goats and all goats challenged with MAP survived and presented a more sub-clinical, chronic form of infection mainly characterized by changes in serum protein profiles. With the progression of the disease, concentrations of gamma globulin, and total protein increased while albumin remained lower compared to controls. Consequently, significantly reduced albumin/globulin ratio and lower Atot Alb as well as higher Atot TP were observed. Changes were fully compensated with no effect on blood pH. Only the strong ion variables differentiated alterations in acid-base equilibrium during acute and chronic NTM-infection.
Project description:Nontuberculous mycobacterial infections caused by the opportunistic pathogen Mycobacterium avium subsp. hominissuis (MAH) are currently receiving renewed attention due to increased incidence combined with difficult treatment. Insights into the disease-causing mechanisms of this species have been hampered by difficulties in genetic manipulation of the bacteria. Here, we identified and sequenced a highly transformable, virulent MAH clinical isolate susceptible to high-density transposon mutagenesis, facilitating global gene disruption and subsequent investigation of MAH gene function. By transposon insertion sequencing (TnSeq) of this strain, we defined the MAH genome-wide genetic requirement for virulence and in vitro growth and organized ?3,500 identified transposon mutants for hypothesis-driven research. The majority (96%) of the genes we identified as essential for MAH in vitro had a mutual ortholog in the related and highly virulent Mycobacterium tuberculosis (Mtb). However, passaging our library through a mouse model of infection revealed a substantial number (54% of total hits) of novel virulence genes. More than 97% of the MAH virulence genes had a mutual ortholog in Mtb Finally, we validated novel genes required for successful MAH infection: one encoding a probable major facilitator superfamily (MFS) transporter and another encoding a hypothetical protein located in the immediate vicinity of six other identified virulence genes. In summary, we provide new, fundamental insights into the underlying genetic requirement of MAH for growth and host infection.IMPORTANCE Pulmonary disease caused by nontuberculous mycobacteria is increasing worldwide. The majority of these infections are caused by the Mycobacterium avium complex (MAC), whereof >90% are due to Mycobacterium avium subsp. hominissuis (MAH). Treatment of MAH infections is currently difficult, with a combination of antibiotics given for at least 12?months. To control MAH by improved therapy, prevention, and diagnostics, we need to understand the underlying mechanisms of infection. Here, we provide crucial insights into MAH's global genetic requirements for growth and infection. We find that the vast majority of genes required for MAH growth and virulence (96% and 97%, respectively) have mutual orthologs in the tuberculosis-causing pathogen M. tuberculosis (Mtb). However, we also find growth and virulence genes specific to MAC species. Finally, we validate novel mycobacterial virulence factors that might serve as future drug targets for MAH-specific treatment or translate to broader treatment of related mycobacterial diseases.
Project description:Mycobacterium avium subsp. hominissuis (MAH) is one of the most common nontuberculous mycobacterial species responsible for chronic lung disease in humans. Despite increasing worldwide incidence, little is known about the genetic mechanisms behind the population evolution of MAH. To elucidate the local adaptation mechanisms of MAH, we assessed genetic population structure, the mutual homologous recombination, and gene content for 36 global MAH isolates, including 12 Japanese isolates sequenced in the present study. We identified five major MAH lineages and found that extensive mutual homologous recombination occurs among them. Two lineages (MahEastAsia1 and MahEastAsia2) were predominant in the Japanese isolates. We identified alleles unique to these two East Asian lineages in the loci responsible for trehalose biosynthesis (treS and mak) and in one mammalian cell entry operon, which presumably originated from as yet undiscovered mycobacterial lineages. Several genes and alleles unique to East Asian strains were located in the fragments introduced via recombination between East Asian lineages, suggesting implication of recombination in local adaptation. These patterns of MAH genomes are consistent with the signature of distribution conjugative transfer, a mode of sexual reproduction reported for other mycobacterial species.
Project description:Mycobacterium avium subsp hominissuis (previously Mycobacterium avium subsp avium) is an environmental organism associated with opportunistic infections in humans. Mycobacterium hominissuis infects and replicates within mononuclear phagocytes. Previous study characterized an attenuated mutant in which the PPE gene (MAV_2928) homologous to Rv1787 was inactivated. This mutant, in contrast to the wild-type bacterium, was shown both to have impaired the ability to replicate within macrophages and to have prevented phagosome/lysosome fusion.MAV_2928 gene is primarily upregulated upon phagocytosis. The transcriptional profile of macrophages infected with the wild-type bacterium and the mutant were examined using DNA microarray, which showed that the two bacteria interact uniquely with mononuclear phagocytes. Based on the results, it was hypothesized that the phagosome environment and vacuole membrane of the wild-type bacterium might differ from the mutant. Wild-type bacterium phagosomes expressed a number of proteins different from those infected with the mutant. Proteins on the phagosomes were confirmed by fluorescence microscopy and Western blot. The environment in the phagosome of macrophages infected with the mutant differed from the environment of vacuoles with M. hominissuis wild-type in the concentration of zinc, manganese, calcium and potassium.The results suggest that the MAV_2928 gene/operon might participate in the establishment of bacterial intracellular environment in macrophages.
Project description:BackgroundMycobacterium avium subsp. hominissuis (MAH) is an emerging opportunistic human pathogen. It can cause pulmonary infections, lymphadenitis and disseminated infections in immuno-compromised patients. In addition, MAH is widespread in the environment, since it has been isolated from water, soil or dust. In recent years, knowledge on MAH at the molecular level has increased substantially. In contrast, knowledge of the MAH metabolic phenotypes remains limited.MethodsIn this study, for the first time we analyzed the metabolic substrate utilization of ten MAH isolates, five from a clinical source and five from an environmental source. We used BIOLOG Phenotype MicroarrayTM technology for the analysis. This technology permits the rapid and global analysis of metabolic phenotypes.ResultsThe ten MAH isolates tested showed different metabolic patterns pointing to high intra-species diversity. Our MAH isolates preferred to use fatty acids such as Tween, caproic, butyric and propionic acid as a carbon source, and L-cysteine as a nitrogen source. Environmental MAH isolates resulted in being more metabolically active than clinical isolates, since the former metabolized more strongly butyric acid (p = 0.0209) and propionic acid (p = 0.00307).DiscussionOur study provides new insight into the metabolism of MAH. Understanding how bacteria utilize substrates during infection might help the developing of strategies to fight such infections.