Project description:DHFR from Pf is a known target for malaria. There is a continued effort for the design and development of the potent inhibitor for PfDHFR in the control of malaria. Therefore it is of interest to screen PfDHFR with the derivatives of Pyrimethamine. The results show that the compound CID 10476801 has lowest docked energy (-11.48 kcal/mol) with protein likely to be a drug candidate, probably inhibiting PfDHFR structure. Residues of PfDHFR protein involved in the formation of hydrogen bonds with compound CID 10476801 are confirmed to be ASP54. The findings provide new insights into development of potent chemotherapeutic drug for combating malaria.
Project description:Mechanisms of drug resistance in Plasmodium vivax have been difficult to study partially because of the difficulties in culturing the parasite in vitro. This hampers monitoring drug resistance and research to develop or evaluate new drugs. There is an urgent need for a novel method to study mechanisms of P. vivax drug resistance. In this paper we report the development and application of the first Plasmodium falciparum expression system to stably express P. vivax dhfr-ts alleles. We used the piggyBac transposition system for the rapid integration of wild-type, single mutant (117N) and quadruple mutant (57L/58R/61M/117T) pvdhfr-ts alleles into the P. falciparum genome. The majority (81%) of the integrations occurred in non-coding regions of the genome; however, the levels of pvdhfr transcription driven by the P. falciparum dhfr promoter were not different between integrants of non-coding and coding regions. The integrated quadruple pvdhfr mutant allele was much less susceptible to antifolates than the wild-type and single mutant pvdhfr alleles. The resistance phenotype was stable without drug pressure. All the integrated clones were susceptible to the novel antifolate JPC-2067. Therefore, the piggyBac expression system provides a novel and important tool to investigate drug resistance mechanisms and gene functions in P. vivax.
Project description:Molecular surveillance of the drug resistance genes in parasite can be used for monitoring/surveillance of drug resistance in endemic malaria areas. Here we report the prevalence of single nucleotide polymorphisms (SNPs) in dihydrofolate reductase (dhfr) gene in nucleotide sequence of Plasmodium falciparum from different regions in India. We found markedly prevalent mutants evident in P. falciparum infections N51I, C59R, 108N and I164L. Our results indicate that P. falciparum populations in the regions show an increase in the prevalence of polymorphisms, most likely reflecting different selective pressures found in humans and mosquitoes. Molecular surveillance can serve as a useful tool to monitor the prevalence/emergence of resistant genotypes within endemic populations and can serve for determining the efficacy of antimalarial drugs.
Project description:Plasmodium falciparum, the protozoan that causes the most lethal form of human malaria, has been controlled principally by two safe, affordable drugs, chloroquine and sulfadoxine-pyrimethamine (SP). Studies in the laboratory and in the field have demonstrated that resistance to SP depends on non-synonymous point mutations in the dihydrofolate reductase (DHFR), and dihydropteroate synthase (DHPS) coding regions. Parasites that carry dhfr genes with 3 or 4 point mutations (51I/59R/108N triple mutation or 51I/59R/108N/164L quadruple mutation) are resistant to pyrimethamine in vitro and patients infected with these parasites respond poorly to SP treatment. The wide spread of these pyrimethamine-resistant alleles demonstrates the increased fitness over drug-sensitive alleles in the presence of the drug. However, it is not clear whether these alleles might reduce the fitness of parasites in the absence of drug pressure. As a first step, we compared the kinetic properties of the wild type, and three mutant alleles to determine whether the native DHFR-thymidylate synthase form of the mutant proteins showed compromised activity in vitro. The mutant enzymes had K(m) values for their substrate, dihydrofolate that were significantly lower than the wild type, k(cat) values in the same range as the wild type enzyme, and k(cat)/K(m) values higher than wild type. In contrast, the K(m) values for the NADPH cofactor were higher than wild type for the mutant enzymes. These observations suggest that the fitness of these parasites may not be compromised relative to those that carry the wild type allele, even without sustained SP drug pressure.
Project description:BackgroundPatterns of emerging drug resistance reflect the underlying adaptive landscapes for specific drugs. In Plasmodium falciparum, the parasite that causes the most serious form of malaria, antifolate drugs inhibit the function of essential enzymes in the folate pathway. However, a handful of mutations in the gene coding for one such enzyme, dihydrofolate reductase, confer drug resistance. Understanding how evolution proceeds from drug susceptibility to drug resistance is critical if new antifolate treatments are to have sustained usefulness.Methodology/principal findingsWe use a transgenic yeast expression system to build on previous studies that described the adaptive landscape for the antifolate drug pyrimethamine, and we describe the most likely evolutionary trajectories for the evolution of drug resistance to the antifolate chlorcycloguanil. We find that the adaptive landscape for chlorcycloguanil is multi-peaked, not all highly resistant alleles are equally accessible by evolution, and there are both commonalities and differences in adaptive landscapes for chlorcycloguanil and pyrimethamine.Conclusions/significanceOur findings suggest that cross-resistance between drugs targeting the same enzyme reflect the fitness landscapes associated with each particular drug and the position of the genotype on both landscapes. The possible public health implications of these findings are discussed.
Project description:BackgroundThe Plasmodium falciparum dihydrofolate reductase (PfDHFR) inhibitors pyrimethamine and cycloguanil (the active metabolite of proguanil) have important roles in malaria chemoprevention, but drug resistance challenges their efficacies. A new compound, P218, was designed to overcome resistance, but drug-susceptibility data for P falciparum field isolates are limited.MethodsWe studied ex vivo PfDHFR inhibitor susceptibilities of 559 isolates from Tororo and Busia districts, Uganda, from 2016 to 2020, sequenced 383 isolates, and assessed associations between genotypes and drug-susceptibility phenotypes.ResultsMedian half-maximal inhibitory concentrations (IC50s) were 42 100 nM for pyrimethamine, 1200 nM for cycloguanil, 13000 nM for proguanil, and 0.6 nM for P218. Among sequenced isolates, 3 PfDHFR mutations, 51I (100%), 59R (93.7%), and 108N (100%), were very common, as previously seen in Uganda, and another mutation, 164L (12.8%), had moderate prevalence. Increasing numbers of mutations were associated with decreasing susceptibility to pyrimethamine, cycloguanil, and P218, but not proguanil, which does not act directly against PfDHFR. Differences in P218 susceptibilities were modest, with median IC50s of 1.4 nM for parasites with mixed genotype at position 164 and 5.7 nM for pure quadruple mutant (51I/59R/108N/164L) parasites.ConclusionsResistance-mediating PfDHFR mutations were common in Ugandan isolates, but P218 retained excellent activity against mutant parasites.
Project description:Surveillance for drug-resistant parasites in human blood is a major effort in malaria control. Here we report contrasting antifolate resistance polymorphisms in Plasmodium falciparum when parasites in human blood were compared with parasites in Anopheles vector mosquitoes from sleeping huts in rural Zambia. DNA encoding P. falciparum dihydrofolate reductase (EC 1.5.1.3) was amplified by PCR with allele-specific restriction enzyme digestions. Markedly prevalent pyrimethamine-resistant mutants were evident in human P. falciparum infections--S108N (>90%), with N51I, C59R, and 108N+51I+59R triple mutants (30-80%). This resistance level may be from selection pressure due to decades of sulfadoxine/pyrimethamine use in the region. In contrast, cycloguanil-resistant mutants were detected in very low frequency in parasites from human blood samples-S108T (13%), with A16V and 108T+16V double mutants (?4%). Surprisingly, pyrimethamine-resistant mutants were of very low prevalence (2-12%) in the midguts of Anopheles arabiensis vector mosquitoes, but cycloguanil-resistant mutants were highly prevalent-S108T (90%), with A16V and the 108T+16V double mutant (49-57%). Structural analysis of the dihydrofolate reductase by in silico modeling revealed a key difference in the enzyme within the NADPH binding pocket, predicting the S108N enzyme to have reduced stability but the S108T enzyme to have increased stability. We conclude that P. falciparum can bear highly host-specific drug-resistant polymorphisms, most likely reflecting different selective pressures found in humans and mosquitoes. Thus, it may be useful to sample both human and mosquito vector infections to accurately ascertain the epidemiological status of drug-resistant alleles.
Project description:Pyrimethamine (Pyr) targets dihydrofolate reductase of Plasmodium vivax (PvDHFR) as well as other malarial parasites, but its use as antimalarial is hampered by the widespread high resistance. Comparison of the crystal structures of PvDHFR from wild-type and the Pyr-resistant (SP21, Ser-58 --> Arg + Ser-117 --> Asn) strain as complexes with NADPH and Pyr or its analog lacking p-Cl (Pyr20) clearly shows that the steric conflict arising from the side chain of Asn-117 in the mutant enzyme, accompanied by the loss of binding to Ser-120, is mainly responsible for the reduction in binding of Pyr. Pyr20 still effectively inhibits both the wild-type and SP21 proteins, and the x-ray structures of these complexes show how Pyr20 fits into both active sites without steric strain. These structural insights suggest a general approach for developing new generations of antimalarial DHFR inhibitors that, by only occupying substrate space of the active site, would retain binding affinity with the mutant enzymes.
Project description:Natural mutations of Plasmodium falciparum dihydrofolate reductase (PfDHFR) at A16V and S108T specifically confer resistance to cycloguanil (CYC) but not to pyrimethamine (PYR). In order to understand the nature of CYC resistance, the effects of various mutations at A16 on substrate and inhibitor binding were examined. Three series of mutations at A16 with or without the S108T/N mutation were generated. Only three mutants with small side chains at residue 16 (G, C, and S) were viable from bacterial complementation assay in the S108 series, whereas these three and an additional four mutants (T, V, M, and I) with slightly larger side chains were viable with simultaneous S108T mutation. Among these combinations, the A16V+S108T mutant was the most CYC resistant, and all of the S108T series ranged from being highly to moderately sensitive to PYR. In the S108N series, a strict requirement for alanine was observed at position 16. Crystal structure analyses reveal that in PfDHFR-TS variant T9/94 (A16V+S108T) complexed with CYC, the ligand has substantial steric conflicts with the side chains of both A16V and S108T, whereas in the complex with PYR, the ligand only showed mild conflict with S108T. CYC analogs designed to avoid such conflicts improved the binding affinity of the mutant enzymes. These results show that there is greater spatial limitation around the S108T/N residue when combined with the limitation imposed by A16V. The limitation of mutation of this series provides opportunities for drug design and development against antifolate-resistant malaria.
Project description:Sulfadoxine-pyrimethamine (SP) combination drug is currently being used in India for the treatment of Plasmodium falciparum as partner drug in artemisinin-based combination therapy (ACT). Resistance to sulfadoxine and pyrimethamine in P. falciparum is linked with mutations in dihydropteroate synthase (pfdhps) and dihydrofolate reductase (pfdhfr) genes respectively. This study was undertaken to estimate the prevalence of such mutations in pfdhfr and pfdhps genes in four states of India.Plasmodium falciparum isolates were collected from two states of India with high malaria incidence i.e., Jharkhand and Odisha and two states with low malaria incidence i.e., Andhra Pradesh and Uttar Pradesh between years 2006 to 2012. Part of sulfadoxine-pyrimethamine (SP) drug resistance genes, pfdhfr and pfdhps were PCR-amplified, sequenced and analyzed.A total of 217 confirmed P. falciparum isolates were sequenced for both Pfdhfr and pfdhps gene. Two pfdhfr mutations 59R and 108N were most common mutations prevalent in all localities in 77 % of isolates. Additionally, I164L was found in Odisha and Jharkhand only (4/70 and 8/84, respectively). Another mutation 51I was found in Odisha only (3/70). The pfdhps mutations 436A, 437G, 540E and 581G were found in Jharkhand and Odisha only in 13, 26, 14 and 13 % isolates respectively, and was absent in Uttar Pradesh and Andhra Pradesh. Combined together for pfdhps and pfdhfr locus, triple, quadruple, quintuple and sextuple mutations were present in Jharkhand and Odisha while absent in Uttar Pradesh and Andhra Pradesh.While only double mutants of pfdhfr was present in low transmission area (Uttar Pradesh and Andhra Pradesh) with total absence of pfdhps mutants, up to sextuple mutations were present in high transmission areas (Odisha and Jharkhand) for both the genes combined. Presence of multiple mutations in pfdhfr and pfdhps genes linked to SP resistance in high transmission area may lead to fixation of multiple mutations in presence of high drug pressure and high recombination rate.