Unknown

Dataset Information

0

The temperature dependence of salt-protein association is sequence specific.


ABSTRACT: Molecular dynamics (MD) simulations are used to probe the origin of the unexpected temperature dependence of salt accumulation in the C-terminal region of the protein human lymphotactin. As in previous MD simulations, sodium ions accumulate in an enhanced manner near the C-terminal helix at the lower temperature, while the temperature dependence of chloride accumulation is much weaker and slightly positive. In a designed mutant in which all positively charged residues in the C-terminal helix are replaced with neutral polar groups (Ser), the unexpected temperature dependence of the sodium ions is no longer observed. Therefore, these simulations convincingly verified the previous hypothesis that the temperature dependence of ion-protein association is sensitive to the local sequence. This is explained qualitatively in terms of the entropy of association between charged species in solution. These findings have general implications for the interpretation of thermodynamic quantities associated with binding events where ion release is important, such as protein-DNA interactions.

SUBMITTER: Ma L 

PROVIDER: S-EPMC2600852 | biostudies-literature | 2006 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

The temperature dependence of salt-protein association is sequence specific.

Ma Liang L   Cui Qiang Q  

Biochemistry 20061201 48


Molecular dynamics (MD) simulations are used to probe the origin of the unexpected temperature dependence of salt accumulation in the C-terminal region of the protein human lymphotactin. As in previous MD simulations, sodium ions accumulate in an enhanced manner near the C-terminal helix at the lower temperature, while the temperature dependence of chloride accumulation is much weaker and slightly positive. In a designed mutant in which all positively charged residues in the C-terminal helix are  ...[more]

Similar Datasets

| S-EPMC3504631 | biostudies-literature
| S-EPMC6927645 | biostudies-literature
| S-EPMC6369011 | biostudies-literature
| S-EPMC3438722 | biostudies-literature
| S-EPMC8984833 | biostudies-literature
| S-EPMC5479825 | biostudies-literature
| S-EPMC3569600 | biostudies-literature
| S-EPMC1414578 | biostudies-literature
| S-EPMC3497798 | biostudies-other
| S-EPMC4441443 | biostudies-literature