Project description:Common variants in the nicotinic acetylcholine receptor gene cluster on chromosome 15q24-25.1 were associated with lung cancer risk in three recently published independently conducted genome-wide association studies, with no consensus as to the relative impact of the variants on the propensity to smoke vs a direct carcinogenic effect. To further explore our hypothesis that these variants are indeed associated with both cancer causation and nicotine dependence, we performed a more detailed analysis of the association of these putative risk genotypes with smoking phenotype, as well as in lifetime never smokers, and in other smoking-related cancers. We demonstrate a statistically significant association of the variants with both nicotine dependence, as well as lung cancer phenotypes, including earlier age at lung cancer onset. The variants were associated with higher risks of lung cancer in lower smoking-exposed strata, and in individuals with a strong family history of lung or smoking-related cancers. In contrast, we found no evidence that the variants were associated with elevated risks in 547 lifetime never-smoking lung cancer case subjects, nor in other smoking-related cancers (bladder and renal). Thus, we conclude that the variants are implicated both in smoking behavior and more directly in lung cancer risk.
Project description:BackgroundThe CHRNA5/A3/B4 gene locus is associated with nicotine dependence and other smoking related disorders. While the non-synonymous CHRNA5 variant rs16969968 appears to be the main risk factor, linkage disequilibrium (LD) bins in the gene cluster carry frequent variants that regulate expression. Pairwise LD and haplotype analyses had identified at least three haplotype tagging SNPs including rs16969968 as main genetic risk factors. Searching for variants with evidence of regulatory functions, we have reported interactions between CHRNA5 and CHRNA3 enhancer variants (tagged by rs880395 and rs1948, respectively) and rs16969968, forming 3-SNP haplotypes and diplotypes that may more accurately reflect the cluster's combined effects on nicotine dependence (Barrie et al., Hum Mutat 38:112-9, 2017). Here we address further contributions by variants affecting CHRNB4, a possibly limiting component of nicotinic receptors.ResultsWe identify an LD bin (tagged by rs4887074) associated with expression of CHRNB4. Additive logistic regression models indicate that rs4887074 is associated with nicotine dependence and modulates the effect of rs16969968 in GWAS datasets (COGEND, UW-TTURC, SAGE). 4-SNP haplotype and diplotype analyses (rs880395-rs16969968-rs1948 -rs4887074) yield nicotine dependence risk values that further differentiate those obtained with the 3-SNP model. Moreover, both the main G allele of rs16969968 and the minor G allele of rs4887074 (associated with reduced expression of CHRNB4), residing predominantly on common haplotypes that are protective, represent significant allele-specific variance QTLs, indicating that they interact with each other.ConclusionsThese results indicate rs4887074 is associated with CHRNB4 expression, and along with two regulatory variants of CHRNA3 and CHRNA5, modulates the effect of rs16969968 on nicotine dependence risk. Assignable to individuals because of strong LD structures, 4-SNP haplotypes and diplotypes serve to assess the combined genetic influence of this multi-gene cluster on complex traits, accounting for complex LD relationships and tissue-specific genetic effects (CHRNA5/3) relevant to the traits analyzed. The 4-SNP haplotypes account at least in part for previous tagging SNPs, including the highly GWAS-significant rs6495308, located in a distinct pair-wise LD bin but included in protective 4-SNP haplotypes. Our approach refines and integrates the cluster's overall genetic influence, an important variable when integrating the genetics of multiple genomic loci.
Project description:BackgroundThe associations between nicotine dependence and specific variants in the nicotinic receptor CHRNA5-A3-B4 subunit genes are irrefutable with replications in many studies. The relationship between the newly identified genetic risk variants for nicotine dependence and comorbid psychiatric disorders is unclear. We examined whether these genetic variants were associated with comorbid disorders and whether comorbid psychiatric disorders modified the genetic risk of nicotine dependence.MethodsIn a case control study of nicotine dependence with 2032 subjects of European descent, we used logistic regression models to examine the pleiotropy and risk moderation. Comorbid disorders examined were alcohol dependence, cannabis dependence, major depressive disorder, panic attack, social phobia, posttraumatic stress disorder (PTSD), attention deficit hyperactivity disorder (ADHD), conduct disorder, and antisocial personality disorder (ASPD).ResultsNicotine dependence was associated with every examined comorbid psychiatric disorders, with odds ratio varying from 1.75 to 3.33. No evidence supported the associations between the genetic variants and the comorbid disorders (pleiotropy). No evidence suggested that the risks for nicotine dependence associated with the genetic variants vary with comorbid psychiatric disorders in general, but the power was limited in detecting interactions.ConclusionsThe genetic risks of nicotine dependence associated with the CHRNA5-A3-B4 subunit genes are specific, and not shared among commonly comorbid psychiatric disorders. The risks for nicotine dependence associated with these genetic variants are not modified by comorbid psychiatric disorders such as major depressive disorder or alcohol dependence. However, the power is an important limitation in studying the interplay of comorbidity and genetic variants.
Project description:ObjectiveNicotine craving is considered an important element in the persistence of cigarette smoking, but little is known about the role of craving in the widely recognized association between variants mapped to the neuronal nicotinic acetylcholine receptor (CHRN) genes on chromosome 15 and nicotine phenotypes.MethodThe associations between CHRNA5-CHRNA3-CHRNB4 variants and cigarettes per day (CPD), the Fagerström Test for Nicotine Dependence (FTND), and craving were analyzed in data from 662 lifetime smokers from an Israeli adult Jewish household sample. Indirect effects of genotype on nicotine phenotypes through craving were formally tested using regression and bootstrapping procedures.ResultsAt CHRNA3, allele G of rs3743078 was associated with increased craving, CPD, and FTND scores: Participants with one or two copies of the G allele had, on average, higher scores on the craving scale (p = .0025), more cigarettes smoked (p = .0057), and higher scores on the FTND (p =.0024). With craving in the model, variant rs3743078 showed a significant indirect effect through craving on CPD (p = .0026) and on FTND score (p = .0024). A sizeable proportion of the total rs3743078 effect on CPD (56.4%) and FTND (65.2%) was indirect through craving.ConclusionsThese results suggest that nicotine craving may play a central role in nicotine use disorders and may have utility as a therapeutic target.
Project description:Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that modulate key physiological processes ranging from neurotransmission to cancer signaling. These receptors are activated by the neurotransmitter, acetylcholine, and the tobacco alkaloid, nicotine. Recently, the gene cluster encoding the alpha3, alpha5 and beta4 nAChR subunits received heightened interest after a succession of linkage analyses and association studies identified multiple single-nucleotide polymorphisms in these genes that are associated with an increased risk for nicotine dependence and lung cancer. It is not clear whether the risk for lung cancer is direct or an effect of nicotine dependence, as evidence for both scenarios exist. In this study, we summarize the body of work implicating nAChRs in the pathogenesis of lung cancer, with special focus on the clustered nAChR subunits and their emerging role in this disease state.
Project description:People who begin daily smoking at an early age are at greater risk of long-term nicotine addiction. We tested the hypothesis that associations between nicotinic acetylcholine receptor (nAChR) genetic variants and nicotine dependence assessed in adulthood will be stronger among smokers who began daily nicotine exposure during adolescence. We compared nicotine addiction-measured by the Fagerstrom Test of Nicotine Dependence-in three cohorts of long-term smokers recruited in Utah, Wisconsin, and by the NHLBI Lung Health Study, using a candidate-gene approach with the neuronal nAChR subunit genes. This SNP panel included common coding variants and haplotypes detected in eight alpha and three beta nAChR subunit genes found in European American populations. In the 2,827 long-term smokers examined, common susceptibility and protective haplotypes at the CHRNA5-A3-B4 locus were associated with nicotine dependence severity (p = 2.0x10(-5); odds ratio = 1.82; 95% confidence interval 1.39-2.39) in subjects who began daily smoking at or before the age of 16, an exposure period that results in a more severe form of adult nicotine dependence. A substantial shift in susceptibility versus protective diplotype frequency (AA versus BC = 17%, AA versus CC = 27%) was observed in the group that began smoking by age 16. This genetic effect was not observed in subjects who began daily nicotine use after the age of 16. These results establish a strong mechanistic link among early nicotine exposure, common CHRNA5-A3-B4 haplotypes, and adult nicotine addiction in three independent populations of European origins. The identification of an age-dependent susceptibility haplotype reinforces the importance of preventing early exposure to tobacco through public health policies.
Project description:Large-scale population studies have established that genetic factors contribute to individual differences in smoking behavior. Linkage and genome-wide association studies have shown many chromosomal regions and genes associated with different smoking behaviors. One study was the association of single-nucleotide polymorphisms (SNPs) in the CHRNA5-A3-B4 gene cluster to nicotine addiction. Here, we report a replication of this association in the Italian population represented by three genetically isolated populations. One, the Val Borbera, is a genetic isolate from North-Western Italy; the Cilento population, is located in South-Western Italy; and the Carlantino village is located in South-Eastern Italy. Owing to their position and their isolation, the three populations have a different environment, different history and genetic structure. The variant A of the rs1051730 SNP was significantly associated with smoking quantity in two populations, Val Borbera and Cilento, no association was found in Carlantino population probably because difference in LD pattern in the variant region.
Project description:Genome-wide association studies (GWASs) have identified associations between the CHRNA5-CHRNA3-CHRNB4 gene cluster and smoking heaviness and nicotine dependence. Studies in rodents have described the anatomical localisation and function of the nicotinic acetylcholine receptors (nAChRs) formed by the subunits encoded by this gene cluster. Further investigations that complemented these studies highlighted the variability of individuals' smoking behaviours and their ability to adjust nicotine intake. GWASs of smoking-related health outcomes have also identified this signal in the CHRNA5-CHRNA3-CHRNB4 gene cluster. This insight underpins approaches to strengthen causal inference in observational data. Combining genetic and mechanistic studies of nicotine dependence and smoking heaviness may reveal novel targets for medication development. Validated targets can inform genetic therapeutic interventions for smoking cessation and tobacco-related diseases.
Project description:BACKGROUND:A nonsynonymous coding polymorphism, rs16969968, of the CHRNA5 gene that encodes the alpha-5 subunit of the nicotinic acetylcholine receptor (nAChR) has been found to be associated with nicotine dependence. The goal of this study was to examine the association of this variant with cocaine dependence. METHODS:Genetic association analysis was performed in two independent samples of unrelated case and control subjects: 1) 504 European Americans participating in the Family Study on Cocaine Dependence (FSCD) and 2) 814 European Americans participating in the Collaborative Study on the Genetics of Alcoholism (COGA). RESULTS:In the FSCD, there was a significant association between the CHRNA5 variant and cocaine dependence (odds ratio = .67 per allele, p = .0045, assuming an additive genetic model), but in the reverse direction compared with that previously observed for nicotine dependence. In multivariate analyses that controlled for the effects of nicotine dependence, both the protective effect for cocaine dependence and the previously documented risk effect for nicotine dependence were statistically significant. The protective effect for cocaine dependence was replicated in the COGA sample. In COGA, effect sizes for habitual smoking, a proxy phenotype for nicotine dependence, were consistent with those observed in FSCD. CONCLUSIONS:The minor (A) allele of rs16969968, relative to the major G allele, appears to be both a risk factor for nicotine dependence and a protective factor for cocaine dependence. The biological plausibility of such a bidirectional association stems from the involvement of nAChRs with both excitatory and inhibitory modulation of dopamine-mediated reward pathways.
Project description:The majority of addictive disorders have a significant heritability-roughly around 50%. Surprisingly, the most convincing association (a nicotinic acetylcholine receptor CHRNA5-A3-B4 gene cluster in nicotine dependence), with a unique attributable risk of 14%, was detected through a genome-wide association study (GWAS) on lung cancer, although lung cancer has a low heritability. We propose some explanations of this finding, potentially helping to understand how a GWAS strategy can be successful. Many endophenotypes were also assessed as potentially modulating the effect of nicotine, indirectly facilitating the development of nicotine dependence. Challenging the involved phenotype led to the demonstration that other potentially overlapping disorders, such as schizophrenia and Parkinson disease, could also be involved, and further modulated by parent monitoring or the existence of a smoking partner. Such a complex mechanism of action is compatible with a gene-environment interaction, most clearly explained by epigenetic factors, especially as such factors were shown to be, at least partly, genetically driven.