Unknown

Dataset Information

0

Partial order optimum likelihood (POOL): maximum likelihood prediction of protein active site residues using 3D Structure and sequence properties.


ABSTRACT: A new monotonicity-constrained maximum likelihood approach, called Partial Order Optimum Likelihood (POOL), is presented and applied to the problem of functional site prediction in protein 3D structures, an important current challenge in genomics. The input consists of electrostatic and geometric properties derived from the 3D structure of the query protein alone. Sequence-based conservation information, where available, may also be incorporated. Electrostatics features from THEMATICS are combined with multidimensional isotonic regression to form maximum likelihood estimates of probabilities that specific residues belong to an active site. This allows likelihood ranking of all ionizable residues in a given protein based on THEMATICS features. The corresponding ROC curves and statistical significance tests demonstrate that this method outperforms prior THEMATICS-based methods, which in turn have been shown previously to outperform other 3D-structure-based methods for identifying active site residues. Then it is shown that the addition of one simple geometric property, the size rank of the cleft in which a given residue is contained, yields improved performance. Extension of the method to include predictions of non-ionizable residues is achieved through the introduction of environment variables. This extension results in even better performance than THEMATICS alone and constitutes to date the best functional site predictor based on 3D structure only, achieving nearly the same level of performance as methods that use both 3D structure and sequence alignment data. Finally, the method also easily incorporates such sequence alignment data, and when this information is included, the resulting method is shown to outperform the best current methods using any combination of sequence alignments and 3D structures. Included is an analysis demonstrating that when THEMATICS features, cleft size rank, and alignment-based conservation scores are used individually or in combination THEMATICS features represent the single most important component of such classifiers.

SUBMITTER: Tong W 

PROVIDER: S-EPMC2612599 | biostudies-literature | 2009 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Partial order optimum likelihood (POOL): maximum likelihood prediction of protein active site residues using 3D Structure and sequence properties.

Tong Wenxu W   Wei Ying Y   Murga Leonel F LF   Ondrechen Mary Jo MJ   Williams Ronald J RJ  

PLoS computational biology 20090116 1


A new monotonicity-constrained maximum likelihood approach, called Partial Order Optimum Likelihood (POOL), is presented and applied to the problem of functional site prediction in protein 3D structures, an important current challenge in genomics. The input consists of electrostatic and geometric properties derived from the 3D structure of the query protein alone. Sequence-based conservation information, where available, may also be incorporated. Electrostatics features from THEMATICS are combin  ...[more]

Similar Datasets

| S-EPMC1933233 | biostudies-literature
2024-03-20 | GSE261769 | GEO
| S-EPMC5579071 | biostudies-literature
| S-EPMC2817405 | biostudies-literature
| S-EPMC2792768 | biostudies-literature
| S-EPMC4245526 | biostudies-other
| S-EPMC2695770 | biostudies-literature
| S-EPMC5751574 | biostudies-literature
| S-EPMC8963701 | biostudies-literature
| S-EPMC1156870 | biostudies-literature