Unknown

Dataset Information

0

Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis.


ABSTRACT: Despite the importance of CNS blood vessels, the molecular mechanisms that regulate CNS angiogenesis and blood-brain barrier (BBB) formation are largely unknown. Here we analyze the role of Wnt/beta-catenin signaling in regulating the formation of CNS blood vessels. First, through the analysis of TOP-Gal Wnt reporter mice, we identify that canonical Wnt/beta-catenin signaling is specifically activated in CNS, but not non-CNS, blood vessels during development. This activation correlates with the expression of different Wnt ligands by neural progenitor cells in distinct locations throughout the CNS, including Wnt7a and Wnt7b in ventral regions and Wnt1, Wnt3, Wnt3a, and Wnt4 in dorsal regions. Blockade of Wnt/beta-catenin signaling in vivo specifically disrupts CNS, but not non-CNS, angiogenesis. These defects include reduction in vessel number, loss of capillary beds, and the formation of hemorrhagic vascular malformations that remain adherent to the meninges. Furthermore, we demonstrate that Wnt/beta-catenin signaling regulates the expression of the BBB-specific glucose transporter glut-1. Taken together these experiments reveal an essential role for Wnt/beta-catenin signaling in driving CNS-specific angiogenesis and provide molecular evidence that angiogenesis and BBB formation are in part linked.

SUBMITTER: Daneman R 

PROVIDER: S-EPMC2626756 | biostudies-literature | 2009 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis.

Daneman Richard R   Agalliu Dritan D   Zhou Lu L   Kuhnert Frank F   Kuo Calvin J CJ   Barres Ben A BA  

Proceedings of the National Academy of Sciences of the United States of America 20090107 2


Despite the importance of CNS blood vessels, the molecular mechanisms that regulate CNS angiogenesis and blood-brain barrier (BBB) formation are largely unknown. Here we analyze the role of Wnt/beta-catenin signaling in regulating the formation of CNS blood vessels. First, through the analysis of TOP-Gal Wnt reporter mice, we identify that canonical Wnt/beta-catenin signaling is specifically activated in CNS, but not non-CNS, blood vessels during development. This activation correlates with the  ...[more]

Similar Datasets

| S-EPMC4676728 | biostudies-literature
| S-EPMC1150820 | biostudies-other
| S-EPMC3472417 | biostudies-literature
| S-EPMC8296592 | biostudies-literature
| S-EPMC1783845 | biostudies-literature
| S-EPMC551520 | biostudies-literature
| S-EPMC1940036 | biostudies-literature
| S-EPMC6362817 | biostudies-literature
| S-EPMC3933391 | biostudies-literature
| S-EPMC554123 | biostudies-literature