Unknown

Dataset Information

0

Long-chain carboxychromanols, metabolites of vitamin E, are potent inhibitors of cyclooxygenases.


ABSTRACT: Cyclooxygenase (COX-1/COX-2)-catalyzed eicosanoid formation plays a key role in inflammation-associated diseases. Natural forms of vitamin E are recently shown to be metabolized to long-chain carboxychromanols and their sulfated counterparts. Here we find that vitamin E forms differentially inhibit COX-2-catalyzed prostaglandin E(2) in IL-1beta-stimulated A549 cells without affecting COX-2 expression, showing the relative potency of gamma-tocotrienol approximately delta-tocopherol > gamma-tocopherol >> alpha- or beta-tocopherol. The cellular inhibition is partially diminished by sesamin, which blocks the metabolism of vitamin E, suggesting that their metabolites may be inhibitory. Consistently, conditioned media enriched with long-chain carboxychromanols, but not their sulfated counterparts or vitamin E, reduce COX-2 activity in COX-preinduced cells with 5 microM arachidonic acid as substrate. Under this condition, 9'- or 13'-carboxychromanol, the vitamin E metabolites that contain a chromanol linked with a 9- or 13-carbon-length carboxylated side chain, inhibits COX-2 with an IC(50) of 6 or 4 microM, respectively. But 13'-carboxychromanol inhibits purified COX-1 and COX-2 much more potently than shorter side-chain analogs or vitamin E forms by competitively inhibiting their cyclooxygenase activity with K(i) of 3.9 and 10.7 microM, respectively, without affecting the peroxidase activity. Computer simulation consistently indicates that 13'-carboxychromanol binds more strongly than 9'-carboxychromanol to the substrate-binding site of COX-1. Therefore, long-chain carboxychromanols, including 13'-carboxychromanol, are novel cyclooxygenase inhibitors, may serve as anti-inflammation and anticancer agents, and may contribute to the beneficial effects of certain forms of vitamin E.

SUBMITTER: Jiang Q 

PROVIDER: S-EPMC2629323 | biostudies-literature | 2008 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Long-chain carboxychromanols, metabolites of vitamin E, are potent inhibitors of cyclooxygenases.

Jiang Qing Q   Yin Xinmin X   Lill Markus A MA   Danielson Matthew L ML   Freiser Helene H   Huang Jianjie J  

Proceedings of the National Academy of Sciences of the United States of America 20081211 51


Cyclooxygenase (COX-1/COX-2)-catalyzed eicosanoid formation plays a key role in inflammation-associated diseases. Natural forms of vitamin E are recently shown to be metabolized to long-chain carboxychromanols and their sulfated counterparts. Here we find that vitamin E forms differentially inhibit COX-2-catalyzed prostaglandin E(2) in IL-1beta-stimulated A549 cells without affecting COX-2 expression, showing the relative potency of gamma-tocotrienol approximately delta-tocopherol > gamma-tocoph  ...[more]

Similar Datasets

| S-EPMC8365602 | biostudies-literature
| S-EPMC4798747 | biostudies-literature
| S-EPMC1170688 | biostudies-other
| S-EPMC7140528 | biostudies-literature
| S-EPMC7883461 | biostudies-literature
| S-EPMC4018152 | biostudies-literature
| S-EPMC9919951 | biostudies-literature
| S-EPMC3223870 | biostudies-other
| S-EPMC5486202 | biostudies-literature
| S-EPMC6314268 | biostudies-literature