Unknown

Dataset Information

0

In situ assembly of linked geometrically coupled microdevices.


ABSTRACT: Complex systems require their distinct components to function in a dynamic, integrated, and cooperative fashion. To accomplish this in current microfluidic networks, individual valves are often switched and pumps separately powered by using macroscopic methods such as applied external pressure. Direct manipulation and control at the single-device level, however, limits scalability, restricts portability, and hinders the development of massively parallel architectures that would take best advantage of microscale systems. In this article, we demonstrate that local geometry combined with a simple global field can not only reversibly drive component assembly but also power distinct devices in a parallel, locally uncoupled, and integrated fashion. By employing this single approach, we assemble and demonstrate the operation of check valves, mixers, and pistons within specially designed microfluidic environments. In addition, we show that by linking these individual components together, more complex devices such as pumps can be both fabricated and powered in situ.

SUBMITTER: Sawetzki T 

PROVIDER: S-EPMC2629335 | biostudies-literature | 2008 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

In situ assembly of linked geometrically coupled microdevices.

Sawetzki T T   Rahmouni S S   Bechinger C C   Marr D W M DW  

Proceedings of the National Academy of Sciences of the United States of America 20081212 51


Complex systems require their distinct components to function in a dynamic, integrated, and cooperative fashion. To accomplish this in current microfluidic networks, individual valves are often switched and pumps separately powered by using macroscopic methods such as applied external pressure. Direct manipulation and control at the single-device level, however, limits scalability, restricts portability, and hinders the development of massively parallel architectures that would take best advanta  ...[more]

Similar Datasets

| S-EPMC4836958 | biostudies-literature
| S-EPMC3607001 | biostudies-literature
| S-EPMC6908307 | biostudies-literature
2020-11-13 | GSE158327 | GEO
| S-EPMC6238648 | biostudies-literature
2017-01-27 | GSE83648 | GEO
| S-EPMC6362405 | biostudies-literature
| S-EPMC6394202 | biostudies-literature