Unknown

Dataset Information

0

Absorption of montelukast is transporter mediated: a common variant of OATP2B1 is associated with reduced plasma concentrations and poor response.


ABSTRACT: To (i) determine whether montelukast undergoes carrier-mediated uptake; (ii) classify the carrier protein(s) responsible for uptake; (iii) identify specific transporters that mediate transport of montelukast; and (iv) evaluate whether variation in the gene encoding the transport protein(s) influences the pharmacokinetics and pharmacodynamics of montelukast.In-vitro permeability studies of montelukast are carried out using Caco-2 cell culture, a standard model of human intestinal drug transport. In-vivo plasma concentrations of montelukast in an asthmatic population are determined by high-performance liquid chromatography, and genotyping of transport proteins is by LightTyper analysis.Permeability of montelukast has an activation energy of 13.7+/-0.7 kcal/mol, consistent with carrier-mediated transport. Permeability is saturable at high concentrations of montelukast and follows Michaelis-Menten kinetics. Permeability is subject to competition by sulfobromophthalein, estrone-3-sulfate, pravastatin, taurocholic acid, and cholic acid (P<0.05, percentage of control: 72+/-7-86+/-7) and is inhibited by 5-10% citrus juice (P<0.05, maximal inhibition percentage of control: 31+/-2). An MDCKII cell line expressing OATP2B1 (coded for by the SLCO2B1 gene) displays significantly increased permeability of montelukast (P<0.05, percentage of control: 140+/-20). A nonsynonymous polymorphism in SLCO2B1, rs12422149; SLCO2B1 {NM_007256.2}:c.935G>A, associates with significantly reduced plasma concentration in patients measured on the morning after an evening dose (P<0.025, square root mean transformed plasma concentration+/-SE; c.[935G>A]+[935G]=3+/-1, c.[935G]+[935G]=7.0+/-0.9) and differential response as assessed by change in baseline Asthma Symptom Utility Index scores after 1 month of therapy (delta mean Asthma Symptom Utility Index; c.[935G>A]+[935G]=0.02+/-0.01, P=1.0; c.[935G]+[935G]=1.0+/-0.3, P<0.0001).Altogether, these observations suggest that the genetics of SLCO2B1 may be an important variable in determining the pharmacokinetics and the pharmacodynamics of montelukast.

SUBMITTER: Mougey EB 

PROVIDER: S-EPMC2641037 | biostudies-literature | 2009 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Absorption of montelukast is transporter mediated: a common variant of OATP2B1 is associated with reduced plasma concentrations and poor response.

Mougey Edward B EB   Feng Hua H   Castro Mario M   Irvin Charles G CG   Lima John J JJ  

Pharmacogenetics and genomics 20090201 2


<h4>Objectives</h4>To (i) determine whether montelukast undergoes carrier-mediated uptake; (ii) classify the carrier protein(s) responsible for uptake; (iii) identify specific transporters that mediate transport of montelukast; and (iv) evaluate whether variation in the gene encoding the transport protein(s) influences the pharmacokinetics and pharmacodynamics of montelukast.<h4>Methods</h4>In-vitro permeability studies of montelukast are carried out using Caco-2 cell culture, a standard model o  ...[more]

Similar Datasets

| S-EPMC4695834 | biostudies-literature
| S-EPMC3093077 | biostudies-literature
| S-EPMC3605990 | biostudies-literature
| S-EPMC4772045 | biostudies-literature
| S-EPMC7711367 | biostudies-literature
| S-EPMC3398713 | biostudies-literature
| S-EPMC9034784 | biostudies-literature
| S-EPMC2570409 | biostudies-literature
| S-EPMC6744435 | biostudies-literature
| S-EPMC10385313 | biostudies-literature