Imaging cerebral gene transcripts in live animals.
Ontology highlight
ABSTRACT: To circumvent the limitations of using postmortem brain in molecular assays, we used avidin-biotin binding to couple superparamagnetic iron oxide nanoparticles (SPIONs) (15-20 nm) to phosphorothioate-modified oligodeoxynucleotides (sODNs) with sequence complementary to c-fos and beta-actin mRNA (SPION-cfos and SPION-beta-actin, respectively) (14-22 nm). The Stern-Volmer constant for the complex of SPION and fluorescein isothiocyanate (FITC)-sODN is 3.1 x 10(6)/m. We studied the feasibility of using the conjugates for in vivo magnetic resonance imaging (MRI) to monitor gene transcription, and demonstrated that these complexes at 40 mug of Fe per kilogram of body weight were retained at least 1 d after intracerebroventricular infusion into the left ventricle of C57Black6 mice. SPION retention measured by MRI as T(2)* or R(2)* maps (R(2)* = 1/T(2)*) was compared with histology of iron oxide (Prussian blue) and FITC-labeled sODN. We observed significant reduction in magnetic resonance (MR) T(2)* signal in the right cortex and striatum; retention of SPION-cfos and SPION-beta-actin positively correlated with c-fos and beta-actin mRNA maps obtained from in situ hybridization. Histological examination showed that intracellular iron oxide and FITC-sODN correlated positively with in vivo MR signal reduction. Furthermore, in animals that were administered SPION-cfos and amphetamine (4 mg/kg, i.p.), retention was significantly elevated in the nucleus accumbens, striatum, and medial prefrontal cortex of the forebrain. Control groups that received SPION-cfos and saline or that received a SPION conjugate with a random-sequence probe and amphetamine showed no retention. These results demonstrated that SPION-sODN conjugates can detect active transcriptions of specific mRNA species in living animals with MRI.
SUBMITTER: Liu CH
PROVIDER: S-EPMC2647966 | biostudies-literature | 2007 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA