Unknown

Dataset Information

0

LDL protein nitration: implication for LDL protein unfolding.


ABSTRACT: Oxidatively- or enzymatically-modified low-density lipoprotein (LDL) is intimately involved in the initiation and progression of atherosclerosis. The in vivo modified LDL is electro-negative (LDL(-)) and consists of peroxidized lipid and unfolded apoB-100 protein. This study was aimed at establishing specific protein modifications and conformational changes in LDL(-) assessed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) and circular dichroism analyses, respectively. The functional significance of these chemical modifications and structural changes were validated with binding and uptake experiments to- and by bovine aortic endothelial cells (BAEC). The plasma LDL(-) fraction showed increased nitrotyrosine and lipid peroxide content as well as a greater cysteine oxidation as compared with native- and total-LDL. LC/MS/MS analyses of LDL(-) revealed specific modifications in the apoB-100 moiety, largely involving nitration of tyrosines in the alpha-helical structures and beta(2) sheet as well as cysteine oxidation to cysteic acid in beta(1) sheet. Circular dichroism analyses showed that the alpha-helical content of LDL(-) was substantially lower ( approximately 25%) than that of native LDL ( approximately 90%); conversely, LDL(-) showed greater content of beta-sheet and random coil structure, in agreement with unfolding of the protein. These results were mimicked by treatment of LDL subfractions with peroxynitrite (ONOO(-)) or SIN-1: similar amino acid modifications as well as conformational changes (loss of alpha-helical structure and gain in beta-sheet structure) were observed. Both LDL(-) and ONOO(-)-treated LDL showed a statistically significant increase in binding and uptake to- and by BAEC compared to native LDL. We further found that most binding and uptake in control-LDL was through LDL-R with minimal oxLDL-R-dependent uptake. ONOO(-)-treated LDL was significantly bound and endocytosed by LOX-1, CD36, and SR-A with minimal contribution from LDL-R. It is suggested that lipid peroxidation and protein nitration may account for the mechanisms leading to apoB-100 protein unfolding and consequential increase in modified LDL binding and uptake to and by endothelial cells that is dependent on oxLDL scavenger receptors.

SUBMITTER: Hamilton RT 

PROVIDER: S-EPMC2649963 | biostudies-literature | 2008 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

LDL protein nitration: implication for LDL protein unfolding.

Hamilton Ryan T RT   Asatryan Liana L   Nilsen Jon T JT   Isas Jose M JM   Gallaher Timothy K TK   Sawamura Tatsuya T   Hsiai Tzung K TK  

Archives of biochemistry and biophysics 20080807 1


Oxidatively- or enzymatically-modified low-density lipoprotein (LDL) is intimately involved in the initiation and progression of atherosclerosis. The in vivo modified LDL is electro-negative (LDL(-)) and consists of peroxidized lipid and unfolded apoB-100 protein. This study was aimed at establishing specific protein modifications and conformational changes in LDL(-) assessed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) and circular dichroism analyses, respectively. The functiona  ...[more]

Similar Datasets

| S-EPMC122559 | biostudies-literature
| S-EPMC3462664 | biostudies-literature
| S-EPMC7773054 | biostudies-literature
| S-EPMC3130175 | biostudies-literature
| S-EPMC6688601 | biostudies-literature
| S-EPMC3039091 | biostudies-literature
| S-EPMC4433384 | biostudies-literature
| S-EPMC2562509 | biostudies-literature
| S-EPMC3580824 | biostudies-literature
| S-EPMC5883950 | biostudies-literature