Unknown

Dataset Information

0

Beta-lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein.


ABSTRACT: It has long been recognized that the modification of penicillin-binding proteins (PBPs) to reduce their affinity for beta-lactams is an important mechanism (target modification) by which Gram-positive cocci acquire antibiotic resistance. Among Gram-negative rods (GNR), however, this mechanism has been considered unusual, and restricted to clinically irrelevant laboratory mutants for most species. Using as a model Pseudomonas aeruginosa, high up on the list of pathogens causing life-threatening infections in hospitalized patients worldwide, we show that PBPs may also play a major role in beta-lactam resistance in GNR, but through a totally distinct mechanism. Through a detailed genetic investigation, including whole-genome analysis approaches, we demonstrate that high-level (clinical) beta-lactam resistance in vitro, in vivo, and in the clinical setting is driven by the inactivation of the dacB-encoded nonessential PBP4, which behaves as a trap target for beta-lactams. The inactivation of this PBP is shown to determine a highly efficient and complex beta-lactam resistance response, triggering overproduction of the chromosomal beta-lactamase AmpC and the specific activation of the CreBC (BlrAB) two-component regulator, which in turn plays a major role in resistance. These findings are a major step forward in our understanding of beta-lactam resistance biology, and, more importantly, they open up new perspectives on potential antibiotic targets for the treatment of infectious diseases.

SUBMITTER: Moya B 

PROVIDER: S-EPMC2654508 | biostudies-literature | 2009 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Beta-lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein.

Moya Bartolomé B   Dötsch Andreas A   Juan Carlos C   Blázquez Jesús J   Zamorano Laura L   Haussler Susanne S   Oliver Antonio A  

PLoS pathogens 20090327 3


It has long been recognized that the modification of penicillin-binding proteins (PBPs) to reduce their affinity for beta-lactams is an important mechanism (target modification) by which Gram-positive cocci acquire antibiotic resistance. Among Gram-negative rods (GNR), however, this mechanism has been considered unusual, and restricted to clinically irrelevant laboratory mutants for most species. Using as a model Pseudomonas aeruginosa, high up on the list of pathogens causing life-threatening i  ...[more]

Similar Datasets

| S-EPMC162958 | biostudies-other
| S-EPMC127293 | biostudies-literature
| S-EPMC163484 | biostudies-other
| S-EPMC3697341 | biostudies-literature
| S-EPMC127296 | biostudies-literature
| S-EPMC1168675 | biostudies-literature
| S-EPMC9146315 | biostudies-literature
| S-EPMC8400419 | biostudies-literature
| S-EPMC10017896 | biostudies-literature
| S-EPMC90533 | biostudies-literature