Unknown

Dataset Information

0

Identification of potential therapeutic targets in malignant mesothelioma using cell-cycle gene expression analysis.


ABSTRACT: Cell-cycle defects are responsible for cancer onset and growth. We studied the expression profile of 60 genes involved in cell cycle in a series of malignant mesotheliomas (MMs), normal pleural tissues, and MM cell cultures using a quantitative polymerase chain reaction-based, low-density array. Nine genes were significantly deregulated in MMs compared with normal controls. Seven genes were overexpressed in MMs, including the following: CDKN2C, cdc6, cyclin H, cyclin B1, CDC2, FoxM1, and Chk1, whereas Ube1L and cyclin D2 were underexpressed. Chk1 is a principal mediator of cell-cycle checkpoints in response to genotoxic stress. We confirmed the overexpression of Chk1 in an independent set of 87 MMs by immunohistochemistry using tissue microarrays. To determine whether Chk1 down-regulation would affect cell-cycle control and cell survival, we transfected either control or Chk1 siRNA into two mesothelioma cell lines and a nontumorigenic (Met5a) cell line. Results showed that Chk1 knockdown increased the apoptotic fraction of MM cells and induced an S phase block in Met5a cells. Furthermore, Chk1 silencing sensitized p53-null MM cells to both an S phase block and apoptosis in the presence of doxorubicin. Our results indicate that cell-cycle gene expression analysis by quantitative polymerase chain reaction can identify potential targets for novel therapies. Chk1 knockdown could provide a novel therapeutic approach to arrest cell-cycle progression in MM cells, thus increasing the rate of cell death.

SUBMITTER: Romagnoli S 

PROVIDER: S-EPMC2665738 | biostudies-literature | 2009 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification of potential therapeutic targets in malignant mesothelioma using cell-cycle gene expression analysis.

Romagnoli Solange S   Fasoli Ester E   Vaira Valentina V   Falleni Monica M   Pellegrini Caterina C   Catania Anna A   Roncalli Massimo M   Marchetti Antonio A   Santambrogio Luigi L   Coggi Guido G   Bosari Silvano S  

The American journal of pathology 20090213 3


Cell-cycle defects are responsible for cancer onset and growth. We studied the expression profile of 60 genes involved in cell cycle in a series of malignant mesotheliomas (MMs), normal pleural tissues, and MM cell cultures using a quantitative polymerase chain reaction-based, low-density array. Nine genes were significantly deregulated in MMs compared with normal controls. Seven genes were overexpressed in MMs, including the following: CDKN2C, cdc6, cyclin H, cyclin B1, CDC2, FoxM1, and Chk1, w  ...[more]

Similar Datasets

| S-EPMC5884183 | biostudies-literature
| S-EPMC9150319 | biostudies-literature
| S-EPMC8776703 | biostudies-literature
| S-EPMC7674463 | biostudies-literature
| S-EPMC5833371 | biostudies-literature
| S-EPMC7242492 | biostudies-literature
| S-EPMC3899767 | biostudies-literature
| S-EPMC3787149 | biostudies-literature
| S-EPMC5562997 | biostudies-literature
| S-EPMC9376167 | biostudies-literature