Unknown

Dataset Information

0

Kinase domain insertions define distinct roles of CLK kinases in SR protein phosphorylation.


ABSTRACT: Splicing requires reversible phosphorylation of serine/arginine-rich (SR) proteins, which direct splice site selection in eukaryotic mRNA. These phosphorylation events are dependent on SR protein (SRPK) and cdc2-like kinase (CLK) families. SRPK1 phosphorylation of splicing factors is restricted by a specific docking interaction whereas CLK activity is less constrained. To understand functional differences between splicing factor targeting kinases, we determined crystal structures of CLK1 and CLK3. Intriguingly, in CLKs the SRPK1 docking site is blocked by insertion of a previously unseen helix alphaH. In addition, substrate docking grooves present in related mitogen activating protein kinases (MAPKs) are inaccessible due to a CLK specific beta7/8-hairpin insert. Thus, the unconstrained substrate interaction together with the determined active-site mediated substrate specificity allows CLKs to complete the functionally important hyperphosphorylation of splicing factors like ASF/SF2. In addition, despite high sequence conservation, we identified inhibitors with surprising isoform specificity for CLK1 over CLK3.

SUBMITTER: Bullock AN 

PROVIDER: S-EPMC2667211 | biostudies-literature | 2009 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Kinase domain insertions define distinct roles of CLK kinases in SR protein phosphorylation.

Bullock Alex N AN   Das Sanjan S   Debreczeni Judit E JE   Rellos Peter P   Fedorov Oleg O   Niesen Frank H FH   Guo Kunde K   Papagrigoriou Evangelos E   Amos Ann L AL   Cho Suhyung S   Turk Benjamin E BE   Ghosh Gourisankar G   Knapp Stefan S  

Structure (London, England : 1993) 20090301 3


Splicing requires reversible phosphorylation of serine/arginine-rich (SR) proteins, which direct splice site selection in eukaryotic mRNA. These phosphorylation events are dependent on SR protein (SRPK) and cdc2-like kinase (CLK) families. SRPK1 phosphorylation of splicing factors is restricted by a specific docking interaction whereas CLK activity is less constrained. To understand functional differences between splicing factor targeting kinases, we determined crystal structures of CLK1 and CLK  ...[more]

Similar Datasets

| S-EPMC9389714 | biostudies-literature
| S-EPMC3148977 | biostudies-literature
| S-EPMC3121894 | biostudies-literature
| S-EPMC4154858 | biostudies-literature
| S-EPMC3085634 | biostudies-literature
| S-EPMC2001257 | biostudies-literature
| S-EPMC6349114 | biostudies-literature
| S-EPMC3664191 | biostudies-literature
| S-EPMC7427327 | biostudies-literature
| S-EPMC9498672 | biostudies-literature