Unknown

Dataset Information

0

A feature-based approach to modeling protein-protein interaction hot spots.


ABSTRACT: Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to pi-related interactions, especially pi . . . pi interactions.

SUBMITTER: Cho KI 

PROVIDER: S-EPMC2677884 | biostudies-literature | 2009 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

A feature-based approach to modeling protein-protein interaction hot spots.

Cho Kyu-il KI   Kim Dongsup D   Lee Doheon D  

Nucleic acids research 20090309 8


Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequen  ...[more]

Similar Datasets

| S-EPMC7336410 | biostudies-literature
| S-EPMC5769548 | biostudies-literature
| S-EPMC2447760 | biostudies-literature
| S-EPMC2516605 | biostudies-literature
| S-EPMC5390796 | biostudies-literature
| S-EPMC7495874 | biostudies-literature
| S-EPMC3822376 | biostudies-literature
| S-EPMC3832042 | biostudies-literature
| S-EPMC5812370 | biostudies-literature
| S-EPMC6148373 | biostudies-literature