Gender differences in expression of the human caspase-12 long variant determines susceptibility to Listeria monocytogenes infection.
Ontology highlight
ABSTRACT: Inflammatory caspases are important effectors of innate immunity. Caspase-12, of the inflammatory caspase subfamily, is expressed in all mammals tested to date, but has acquired deleterious mutation in humans. A single-nucleotide polymorphism introduces a premature stop codon in caspase-12 in the majority of the population. However, in 20% of African descendants, caspase-12 is expressed and sensitizes to infections and sepsis. Here, we examined the modalities by which human caspase-12 confers susceptibility to infection. We have generated a fully humanized mouse that expresses the human caspase-12 rare variant (Csp-12L) in a mouse casp-12(-/-) background. Characterization of the humanized mouse uncovered sex differences in Csp-12L expression and gender disparity in innate immunity to Listeria monocytogenes infection. The Csp-12L transgene completely reversed the knockout resistance-to-infection phenotype in casp-12(-/-) males. In contrast, it had a marginal effect on the response of female mice. We found that estrogen levels modulated the expression of caspase-12. Csp-12L was expressed in male mice but its expression was repressed in female mice. Administration of 17-beta-estradiol (E2) to humanized male mice had a direct suppressive effect on Csp-12L expression and conferred relative resistance to infection. Chromatin immunoprecipitation experiments revealed that caspase-12 is a direct transcriptional target of the estrogen receptor alpha (ERalpha) and mapped the estrogen response element (ERE) to intron 7 of the gene. We propose that estrogen-mediated inhibition of Csp-12L expression is a built-in mechanism that has evolved to protect females from infection.
SUBMITTER: Yeretssian G
PROVIDER: S-EPMC2690057 | biostudies-literature | 2009 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA