Unknown

Dataset Information

0

Genetic manipulation of palmitoylethanolamide production and inactivation in Saccharomyces cerevisiae.


ABSTRACT:

Background

Lipids can act as signaling molecules, activating intracellular and membrane-associated receptors to regulate physiological functions. To understand how a newly discovered signaling lipid functions, it is necessary to identify and characterize the enzymes involved in their production and inactivation. The signaling lipid N-palmitoylethanolamine (PEA) is known to activate intracellular and membrane-associated receptors and regulate physiological functions, but little is known about the enzymes involved in its production and inactivation.

Principal findings

Here we show that Saccharomyces cerevisiae produce and inactivate PEA, suggesting that genetic manipulations of this lower eukaryote may be used to identify the enzymes involved in PEA metabolism. Accordingly, using single gene deletion mutants, we identified yeast genes that control PEA metabolism, including SPO14 (a yeast homologue of the mammalian phospholipase D) that controls PEA production and YJU3 (a yeast homologue of the mammalian monoacylglycerol lipase) that controls PEA inactivation. We also found that PEA metabolism is affected by heterologous expression of two mammalian proteins involved in neurodegenerative diseases, namely huntingtin and alpha-synuclein.

Significance

Together these findings show that forward and reverse genetics in S. cerevisiae can be used to identify proteins involved in PEA production and inactivation, and suggest that mutated proteins causing neurodegenerative diseases might affect the metabolism of this important signaling lipid.

SUBMITTER: Muccioli GG 

PROVIDER: S-EPMC2691958 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5371240 | biostudies-literature
| S-EPMC8859104 | biostudies-literature
| S-EPMC2830865 | biostudies-literature
| S-EPMC7607689 | biostudies-literature
| S-EPMC9210708 | biostudies-literature
| S-EPMC6348118 | biostudies-literature
| S-EPMC6717016 | biostudies-literature
| S-EPMC5811566 | biostudies-literature
| S-EPMC6029064 | biostudies-literature
| S-EPMC6050663 | biostudies-literature