Project description:Radiotherapy as a primary treatment for thoracic malignancies induces deleterious effects, such as acute or subacute radiation-induced lung injury (RILI). Although the molecular etiology of RILI is controversial and likely multifactorial, a potentially important cellular target is the lung endothelial cytoskeleton that regulates paracellular gap formation and the influx of macromolecules and fluid to the alveolar space. Here we investigate the central role of a key endothelial cytoskeletal regulatory protein, the nonmuscle isoform of myosin light chain kinase (nmMLCK), in an established murine RILI model. Our results indicate that thoracic irradiation significantly augmented nmMLCK protein expression and enzymatic activity in murine lungs. Furthermore, genetically engineered mice harboring a deletion of the nmMLCK gene (nmMLCK(-/-) mice) exhibited protection from RILI, as assessed by attenuated vascular leakage and leukocyte infiltration. In addition, irradiated wild-type mice treated with two distinct MLCK enzymatic inhibitors, ML-7 and PIK (peptide inhibitor of kinase), also demonstrated attenuated RILI. Taken together, these data suggests a key role for nmMLCK in vascular barrier regulation in RILI and warrants further examination of RILI strategies that target nmMLCK.
Project description:The genetic basis of acute lung injury (ALI) is poorly understood. The myosin light chain kinase (MYLK) gene encodes the nonmuscle myosin light chain kinase isoform, a multifunctional protein involved in the inflammatory response (apoptosis, vascular permeability, leukocyte diapedesis). To examine MYLK as a novel candidate gene in sepsis-associated ALI, we sequenced exons, exon-intron boundaries, and 2 kb of 5' UTR of the MYLK, which revealed 51 single-nucleotide polymorphisms (SNPs). Potential association of 28 MYLK SNPs with sepsis-associated ALI were evaluated in a case-control sample of 288 European American subjects (EAs) with sepsis alone, subjects with sepsis-associated ALI, or healthy control subjects, and a sample population of 158 African American subjects (AAs) with sepsis and ALI. Significant single locus associations in EAs were observed between four MYLK SNPs and the sepsis phenotype (P<0.001), with an additional SNP associated with the ALI phenotype (P=0.03). A significant association of a single SNP (identical to the SNP identified in EAs) was observed in AAs with sepsis (P=0.002) and with ALI (P=0.01). Three sepsis risk-conferring haplotypes in EAs were defined downstream of start codon of smooth muscle MYLK isoform, a region containing putative regulatory elements (P<0.001). In contrast, multiple haplotypic analyses revealed an ALI-specific, risk-conferring haplotype at 5' of the MYLK gene in both European and African Americans and an additional 3' region haplotype only in African Americans. These data strongly implicate MYLK genetic variants to confer increased risk of sepsis and sepsis-associated ALI.
Project description:Nonmuscle myosin light-chain kinase (MYLK) mediates increased lung vascular endothelial permeability in lipopolysaccharide-induced lung inflammatory injury, the chief cause of the acute respiratory distress syndrome. In a lung injury model, we demonstrate here that MYLK was also essential for neutrophil transmigration, but that this function was mostly independent of myosin II regulatory light chain, the only known substrate of MYLK. Instead, MYLK in neutrophils was required for the recruitment and activation of the tyrosine kinase Pyk2, which mediated full activation of beta(2) integrins. Our results demonstrate that MYLK-mediated activation of beta(2) integrins through Pyk2 links beta(2) integrin signaling to the actin motile machinery of neutrophils.
Project description:Acute lung injury (ALI), a major cause of acute respiratory failure with high morbidity and mortality, isare characterized by significant pulmonary inflammation and both alveolar and vascular barriers dysfunction. In Pprior studies have highlighted the role of nonmuscle myosin light chain kinase (nmMLCK) as an essential element of inflammatory response with MYLK polymorphisms associated withwhich alters ALI susceptibility. In the present study we sought to further define nmMLCK in acute inflammatory syndromes and examined We examined nmMLCK as a molecular target involved in increase of lung epithelial and endothelial barrier permeability. We utilized in two muirine models of inflammatory lung injury: intratracheal administration of endotoxin/lipopolysaccharide (LPS, 2.5 mg/kg) and VILI (ventilator-induced lung injury, tidal volume 40ml/kg). Two complementary strategies were used to reduce nmMLCK activity or expression. We found that membrane permeant oligopeptide, PIK, inhibited MLC kinase activity in vitro in aand displayed dose-dependent mannerinhibition of MLC kinase activity.. Intravenous delivery of PIK significantly attenuated LPS-induced lung inflammation reflected by decreasing accumulation of bronchoalveolar lavage (BAL) albumin (~ 50% reduction) as well as reduction in BAL cells, tissue MPO activity and tissue albumin in lung homogenates. A second regulatory approach explored targeting murine nmMLCK by administration of siRNA (5mg/kg) 3 days prior to LPS challenge. siRNA decreased of nmMLCK expression in lungs (~ 70% reduction) and resulted in significant attenuation LPS-induced lung inflammation (~ 40% reduction) as reflected by decreased BAL protein level and BAL cells. For targeting pulmonary vessels nmMLCK we used ACE antibody-conjugated liposomes with nmMLCK siRNA in murine ventilator-induced lung injury (VILI) model. Protein silencing of nmMLCK was evident by immunohistochemical analysis with a decrease in relative intensity of fluorescence in lung vessels compared with control animals. Furthermore, the inhibition of nmMLCK expression by siRNA in vessels significantly attenuated VILI lung injury as reflected by decreased BAL protein level (40% reduction). Finally, MLCK knockout mice were significantly protected (reduced BAL protein and albumin) when exposed to a model of severe VILI (4h, 40ml/kg tidal volume). Conclusion: the MLCK gene KO and chemical biology results indicate that the targeting of nmMLCK in vivo attenuate the severity of LPS-induced or VILI acute lung injury. We used microarrays to detail the global programme of gene expression induced by VILI in Wild type and nmMLCK-/- mouse.
Project description:Acute lung injury (ALI) and mechanical ventilator-induced lung injury (VILI), major causes of acute respiratory failure with elevated morbidity and mortality, are characterized by significant pulmonary inflammation and alveolar/vascular barrier dysfunction. Previous studies highlighted the role of the non-muscle myosin light chain kinase isoform (nmMLCK) as an essential element of the inflammatory response, with variants in the MYLK gene that contribute to ALI susceptibility. To define nmMLCK involvement further in acute inflammatory syndromes, we used two murine models of inflammatory lung injury, induced by either an intratracheal administration of lipopolysaccharide (LPS model) or mechanical ventilation with increased tidal volumes (the VILI model). Intravenous delivery of the membrane-permeant MLC kinase peptide inhibitor, PIK, produced a dose-dependent attenuation of both LPS-induced lung inflammation and VILI (~50% reductions in alveolar/vascular permeability and leukocyte influx). Intravenous injections of nmMLCK silencing RNA, either directly or as cargo within angiotensin-converting enzyme (ACE) antibody-conjugated liposomes (to target the pulmonary vasculature selectively), decreased nmMLCK lung expression (∼70% reduction) and significantly attenuated LPS-induced and VILI-induced lung inflammation (∼40% reduction in bronchoalveolar lavage protein). Compared with wild-type mice, nmMLCK knockout mice were significantly protected from VILI, with significant reductions in VILI-induced gene expression in biological pathways such as nrf2-mediated oxidative stress, coagulation, p53-signaling, leukocyte extravasation, and IL-6-signaling. These studies validate nmMLCK as an attractive target for ameliorating the adverse effects of dysregulated lung inflammation.
Project description:AbstractSepsis-induced intestinal hyperpermeability is mediated by disruption of the epithelial tight junction, which is closely associated with the peri-junctional actin-myosin ring. Genetic deletion of myosin light chain kinase (MLCK) reverses intestinal hyperpermeability and improves survival in a murine model of intra-abdominal sepsis. In an attempt to determine whether these findings could be translated using a more clinically relevant strategy, this study aimed to determine if pharmacologic inhibition of MLCK using the membrane permeant inhibitor of MLCK (PIK) improved gut barrier function and survival following sepsis. C57BL/6 mice underwent cecal ligation and puncture to induce sepsis and were then randomized to receive either PIK or vehicle. Unexpectedly, PIK significantly worsened 7-day survival following sepsis (24% vs. 62%). The three pathways of intestinal permeability were then interrogated by orally gavaging septic mice with creatinine (6Å), FD-4 (28Å), and rhodamine70 (120Å) and assaying their appearance in the bloodstream. PIK led to increased permeability in the leak pathway with higher levels of FD-4 in the bloodstream compared to septic mice given vehicle. In contrast, no differences were detected in the pore or unrestricted pathways of permeability. Examination of jejunal tight junctions for potential mechanisms underlying increased leak permeability revealed that mice that received PIK had increased phosphorylated MLC without alterations in occludin, ZO-1, or JAM-A. PIK administration was not associated with significant differences in systemic or peritoneal bacterial burden, cytokines, splenic or Peyer's Patches immune cells or intestinal integrity. These results demonstrate that pharmacologic inhibition of MLCK unexpectedly increases mortality, associated with worsened intestinal permeability through the leak pathway, and suggest caution is required in targeting the gut barrier as a potential therapy in sepsis.
Project description:Global knockout of the nonmuscle isoform of myosin light-chain kinase (nmMLCK), a primary cellular regulator of cytoskeletal machinery, is strongly protective in preclinical murine models of inflammatory lung injury. The current study was designed to assess the specific contribution of endothelial cell (EC) nmMLCK to the severity of murine inflammatory lung injury produced by lipopolysaccharide (LPS) and mechanical ventilation ventilator-induced lung injury or ventilation (VILI). Responses to combined LPS/VILI exposure were assessed in: (i) wild-type (WT) C57BL/6J mice; (ii) transgenic mice with global deletion of nmMLCK (nmMylk -/-); (iii) transgenic nmMylk -/- mice with overexpression of nmMLCK restricted to the endothelium (nmMylk -/-/ec-tg+). Lung inflammation indices included lung histology, bronchoalveolar lavage (BAL) polymorphonuclear leukocytes (PMNs), lung protein biochemistry, tissue albumin levels, Evans blue dye (EBD) lung extravasation, and plasma cytokines (interleukin-6 [IL-6], keratinocyte chemoattractant [KC]/IL-8, IL-1bβ, extracellular nicotinamide phosphoribosyltransferase, tumor necrosis factor-α). Compared to WT C57BL/6J mice, the severity of LPS/VILI-induced lung injury was markedly reduced in mice with global nmMLCK deletion reflected by reductions in histologic inflammatory lung injury, BAL PMN counts, mitogen-activated protein kinase, and NF-kB pathway activation in lung homogenates, plasma cytokine levels, and parameters of lung permeability (increased BAL protein, tissue albumin levels, EBD lung extravasation). In contrast, mice with restricted overexpression of nmMLCK in EC (nmMylk -/-/ec-tg+) showed significant persistence of LPS/VILI-induced lung injury severity compared to WT mice. In conclusion, these studies strongly endorse the role of EC nmMLCK in driving the severity of preclinical inflammatory lung injury. Precise targeting of EC nmMLCK may represent an attractive therapeutic strategy to reduce lung inflammation and both lung and systemic vascular permeability.
Project description:Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca(2+) sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V(max) and K(M) for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant kinase in cardiac tissue on the basis of its specificity, kinetics, and tissue expression.
Project description:Myosin light chain kinase (MLCK) has long been implicated in the myosin phosphorylation and force generation required for cell migration. Here, we surprisingly found that the deletion of MLCK resulted in fast cell migration, enhanced protrusion formation, and no alteration of myosin light chain phosphorylation. The mutant cells showed reduced membrane tether force and fewer membrane F-actin filaments. This phenotype was rescued by either kinase-dead MLCK or five-DFRXXL motif, a MLCK fragment with potent F-actin-binding activity. Pull-down and co-immunoprecipitation assays showed that the absence of MLCK led to attenuated formation of transmembrane complexes, including myosin II, integrins and fibronectin. We suggest that MLCK is not required for myosin phosphorylation in a migrating cell. A critical role of MLCK in cell migration involves regulating the cell membrane tension and protrusion necessary for migration, thereby stabilizing the membrane skeleton through F-actin-binding activity. This finding sheds light on a novel regulatory mechanism of protrusion during cell migration.
Project description:Two myosin light chain (MLC) kinase (MLCK) proteins, smooth muscle (encoded by mylk1 gene) and skeletal (encoded by mylk2 gene) MLCK, have been shown to be expressed in mammals. Even though phosphorylation of its putative substrate, MLC2, is recognized as a key regulator of cardiac contraction, a MLCK that is preferentially expressed in cardiac muscle has not yet been identified. In this study, we characterized a new kinase encoded by a gene homologous to mylk1 and -2, named cardiac MLCK, which is specifically expressed in the heart in both atrium and ventricle. In fact, expression of cardiac MLCK is highly regulated by the cardiac homeobox protein Nkx2-5 in neonatal cardiomyocytes. The overall structure of cardiac MLCK protein is conserved with skeletal and smooth muscle MLCK; however, the amino terminus is quite unique, without significant homology to other known proteins, and its catalytic activity does not appear to be regulated by Ca(2+)/calmodulin in vitro. Cardiac MLCK is phosphorylated and the level of phosphorylation is increased by phenylephrine stimulation accompanied by increased level of MLC2v phosphorylation. Both overexpression and knockdown of cardiac MLCK in cultured cardiomyocytes revealed that cardiac MLCK is likely a new regulator of MLC2 phosphorylation, sarcomere organization, and cardiomyocyte contraction.