Unknown

Dataset Information

0

The EP4 receptor antagonist, L-161,982, blocks prostaglandin E2-induced signal transduction and cell proliferation in HCA-7 colon cancer cells.


ABSTRACT: Accumulating evidence indicates that elevated levels of prostaglandin E(2) (PGE(2)) can increase intestinal epithelial cell proliferation, and thus play a role in colorectal tumorigenesis. PGE(2) exerts its effects through four G-protein-coupled PGE receptor (EP) subtypes, named the EP1, EP2, EP3, and EP4. Increased phosphorylation of extracellular regulated kinases (ERK1/2) is required for PGE(2) to stimulate cell proliferation of human colon cancer cells. However, the EP receptor(s) that are involved in this process remain unknown. We provide evidence that L-161,982, a selective EP4 receptor antagonist, completely blocks PGE(2)-induced ERK phosphorylation and cell proliferation of HCA-7 cells. In order to identify downstream target genes of ERK1/2 signaling, we found that PGE(2) induces expression of early growth response gene-1 (EGR-1) downstream of ERK1/2 and regulates its expression at the level of transcription. PGE(2) treatment induces phosphorylation of cyclic AMP response element binding protein (CREB) at Ser133 residue and CRE-mediated luciferase activity in HCA-7 cells. Studies with dominant-negative CREB mutant (ACREB) provide clear evidence for the involvement of CREB in PGE(2) driven egr-1 transcription in HCA-7 cells. In conclusion, this study reveals that egr-1 is a target gene of PGE(2) in HCA-7 cells and is regulated via the newly identified EP4/ERK/CREB pathway. Finally our results support the notion that antagonizing EP4 receptors may provide a novel therapeutic approach to the treatment of colon cancer.

SUBMITTER: Cherukuri DP 

PROVIDER: S-EPMC2706013 | biostudies-literature | 2007 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

The EP4 receptor antagonist, L-161,982, blocks prostaglandin E2-induced signal transduction and cell proliferation in HCA-7 colon cancer cells.

Cherukuri Durga Prasad DP   Chen Xiao B O XB   Goulet Anne-Christine AC   Young Robert N RN   Han Yongxin Y   Heimark Ronald L RL   Regan John W JW   Meuillet Emmanuelle E   Nelson Mark A MA  

Experimental cell research 20070622 14


Accumulating evidence indicates that elevated levels of prostaglandin E(2) (PGE(2)) can increase intestinal epithelial cell proliferation, and thus play a role in colorectal tumorigenesis. PGE(2) exerts its effects through four G-protein-coupled PGE receptor (EP) subtypes, named the EP1, EP2, EP3, and EP4. Increased phosphorylation of extracellular regulated kinases (ERK1/2) is required for PGE(2) to stimulate cell proliferation of human colon cancer cells. However, the EP receptor(s) that are i  ...[more]

Similar Datasets

| S-EPMC357014 | biostudies-literature
| S-EPMC10007874 | biostudies-literature
| S-EPMC3173651 | biostudies-literature
| S-EPMC3600062 | biostudies-literature
| S-EPMC3081002 | biostudies-literature
| S-EPMC3996215 | biostudies-literature
| S-EPMC4550358 | biostudies-literature
| S-EPMC4306689 | biostudies-literature
| S-EPMC3178752 | biostudies-literature
2014-04-25 | GSE55627 | GEO